Practical synthesis of aryl triflates under aqueous conditions.

Org Lett

Department of Process Research, Merck Research Laboratories, Merck & Co., 466 Devon Park Drive, Wayne, Pennsylvania 19087, USA.

Published: December 2002

[reaction: see text] A practical and efficient synthesis of aryl triflates under biphasic basic aqueous conditions is described. The current methodology provides entry into these valuable substrates that omits the use of amine bases and allows facile isolation by simple solvent evaporation after phase separation. Good yields can also be obtained without the use of organic solvent.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol027154zDOI Listing

Publication Analysis

Top Keywords

synthesis aryl
8
aryl triflates
8
aqueous conditions
8
practical synthesis
4
triflates aqueous
4
conditions [reaction
4
[reaction text]
4
text] practical
4
practical efficient
4
efficient synthesis
4

Similar Publications

Synthesis of Indole Derivatives via Aryl Triazole Ring-Opening and Subsequent Cyclization.

Molecules

January 2025

Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia.

A metal-free two-step synthetic approach for obtaining indole derivatives from aryl triazole fragment-containing compounds has been developed. In the first step, the Dimroth equilibrium, followed by nitrogen extrusion, Wolff rearrangement, and amine nucleophile addition, leads to the formation of -aryl ethene-1,1-diamines. In the second step, the latter intermediates are cyclized into the target 1-indoles in the presence of iodine.

View Article and Find Full Text PDF

A straightforward synthetic route towards DAB-1 scaffolded dimeric iminosugars is described here, starting from readily available bis-glycosylamines. The method allows the integration of a variety of linkages (aryl, alkyl, polyethyleneglycol chains) between both iminosugars through the choice of the bis-amine used in the first step. Moreover, an additional substituent (allyl, ethynyl) may be inserted into the structure via nucleophilic addition of an organometallic reagent to the starting bis-glycosylamine.

View Article and Find Full Text PDF

Diet-derived urolithin A is produced by a dehydroxylase encoded by human gut Enterocloster species.

Nat Commun

January 2025

Department of Pharmacology & Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada.

Urolithin A (uroA) is a polyphenol derived from the multi-step metabolism of dietary ellagitannins by the human gut microbiota. Once absorbed, uroA can trigger mitophagy and aryl hydrocarbon receptor signaling pathways, altering host immune function, mitochondrial health, and intestinal barrier integrity. Most individuals harbor a microbiota capable of uroA production; however, the mechanisms underlying the dehydroxylation of its catechol-containing precursor (uroC) are unknown.

View Article and Find Full Text PDF

Synthesis of -Aryl Carbamates from Aryl(TMP)iodonium Salts via C-N Coupling.

Org Lett

January 2025

Department of Chemistry, Portland State University, Portland, Oregon 97201, United States.

Modular C-N coupling is a desirable way to construct -aryl carbamates, which are privileged scaffolds in active pharmaceutical ingredients. However, there are no broadly applicable metal-free methods for the-arylation of carbamates. Herein, we describe a metal-free approach that uses aryl(TMP)iodonium salts as arylation reagents for cyclic carbamates by exploiting the metal-like reactivity of iodine(III).

View Article and Find Full Text PDF

Regioselective 1,4-Addition of P(O)-H Species to In SituFormed 1-Benzopyrylium Ion from C3-Substituted 2-Chromene Hemiketals to Construct C3-Functionalized C4-Phosphorylated 4-Chromenes.

J Org Chem

January 2025

Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P.R. China.

Herein, we report the first example that P(O)-H species including -phosphonates and -phosphine oxides could participate in a highly regioselective 1,4-addition to in situ generated 1-benzopyrylium ion from C3-substituted 2-chromene hemiketals, which provides a brand-new and effective approach for the synthesis of C4-phosphorylated 4-chromenes with diverse C3-functionality (ketone, ester, sulfonyl, aryl, and alkyl groups). In total, the reaction features the use of inexpensive Zn(ClO)·6HO as a catalyst, low catalyst loading (only 5 mol %), mild reaction conditions (60 °C, 10 min to 24 h), and broad substrate scope (46 examples) as well as good to high yields (>90% yield on average). More importantly, mechanistic experiments demonstrated the essential role of the C3-substituent on 2-chromene hemiketals in stabilizing the in situ generated 1-benzopyrylium ion and the regioselective 1,4-addition control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!