With the continual pressure to ensure follow-up molecules to billion dollar blockbuster drugs, there is a hurdle in profitability and growth for pharmaceutical companies in the next decades. With each success and failure we increasingly appreciate that a key to the success of synthesized molecules through the research and development process is the possession of drug-like properties. These properties include an adequate bioactivity as well as adequate solubility, an ability to cross critical membranes (intestinal and sometimes blood-brain barrier), reasonable metabolic stability and of course safety in humans. Dependent on the therapeutic area being investigated it might also be desirable to avoid certain enzymes or transporters to circumvent potential drug-drug interactions. It may also be important to limit the induction of these same proteins that can result in further toxicities. We have clearly moved the assessment of in vitro absorption, distribution, metabolism, excretion and toxicity (ADME/TOX) parameters much earlier in the discovery organization than a decade ago with the inclusion of higher throughput systems. We are also now faced with huge amounts of ADME/TOX data for each molecule that need interpretation and also provide a valuable resource for generating predictive computational models for future drug discovery. The present review aims to show what tools exist today for visualizing and modeling ADME/TOX data, what tools need to be developed, and how both the present and future tools are valuable for virtual filtering using ADME/TOX and bioactivity properties in parallel as a viable addition to present practices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1020816005910 | DOI Listing |
Annu Rev Biomed Data Sci
January 2025
1Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, California, USA;
Cancer remains a leading cause of death globally. The complexity and diversity of cancer-related datasets across different specialties pose challenges in refining precision medicine for oncology. Foundation models offer a promising solution.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States.
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious side effect of anticancer agents with limited effective preventive or therapeutic interventions. Although fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, has demonstrated neuroprotective and analgesic properties, its clinical utility is hindered by low receptor affinity, poor subtype selectivity, and suboptimal bioavailability. A190, a highly selective and potent nonfibrate PPARα agonist, offers a promising alternative but is limited by poor aqueous solubility, resulting in reduced oral bioavailability and therapeutic efficacy.
View Article and Find Full Text PDFNanoscale
January 2025
Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Bhubaneswar-751 030, Odisha, India.
Titanium (Ti)-based MOFs are promising materials known for their porosity, stability, diverse valence states, and a lower conduction band (CB) than Zr-MOFs. These features support stable ligand-to-metal charge transfer (LMCT) transitions under photoirradiation, enhancing photocatalytic performance. However, Ti-MOF structures remain a challenge owing to the highly volatile and hydrophilic nature of ionic Ti precursors.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Innovation and Drug Discovery, Sava Healthcare Limited, Research Center, MIDC, Block D1, Plot No. 17/6, Chinchwad, Pune, 411019, India.
Plant parts such as roots, bark, leaves, flowers, and fruits that hold ethnopharmacological significance are naturally prone to microbial contamination, influenced by environmental factors like moisture and humidity. This study focuses on assessing the microbial load in the raw material of Tribulus terrestris (TT). The primary bacterium isolated from the pulverized raw material was identified as Bacillus haynesii through 16S rRNA sequencing.
View Article and Find Full Text PDF<b>Background and Objective:</b> Peatlands are unique ecosystems rich in microbial diversity, including bacteria with potential antibiotic activity. This study focuses on the isolation and characterization of bacteria from Indonesian peat soil, particularly their potential to produce antibiotics against multidrug-resistant (MDR) pathogens, including Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA). <b>Materials and Methods:</b> Bacterial isolates were rejuvenated on nutrient agar and subjected to antimicrobial activity testing using the Bauer & Kirby diffusion method against MRSA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!