The cationic steroidal receptors 9 and 11 have been synthesized from cholic acid 3. Receptor 9 extracts N-acetyl-alpha-amino acids from aqueous media into chloroform with enantioselectivities (L:D) of 7-10:1. The lipophilic variant 11 has been employed for the enantioselective transport of N-acetylphenylalanine, a) through dichloromethane (DCM) and dichloroethane (DCE) bulk liquid membranes (U-tube apparatus), and b) through 2.5% (v/v) octanol/hexane via hollow fibre membrane contactors. Significant enantioselectivities and multiple turnovers were observed for both types of apparatus.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1521-3765(20020703)8:13<2931::AID-CHEM2931>3.0.CO;2-HDOI Listing

Publication Analysis

Top Keywords

enantioselective transport
8
transport steroidal
4
steroidal guanidinium
4
guanidinium receptor
4
receptor cationic
4
cationic steroidal
4
steroidal receptors
4
receptors synthesized
4
synthesized cholic
4
cholic acid
4

Similar Publications

Chiral Membrane Containing Subnanometer Channels for Enantioselective Transport Amino Acids.

Anal Chem

January 2025

State Key Laboratory of Green Pesticide (CCNU), College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.

The research of chiral separation technology is of great significance for understanding the origin of life and promoting the application of chiral molecules. Herein, anionic chiral pillar[6]arene and cationic pillar[6]arene were designed and synthesized, and a chiral pillar[6]arene membrane was constructed by layer-by-layer assembly through electrostatic interactions. The transport rates of l and d in this channel were 14.

View Article and Find Full Text PDF

Enantioselective Toxicity of Ibuprofen to Earthworms: Unraveling the Effect and Mechanism on Enhanced Toxicity of -Ibuprofen Over -Ibuprofen.

Environ Sci Technol

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.

With the global implementation of wastewater reuse, accurately assessing the soil ecological risk of chiral pollutants from wastewater necessitates a comprehensive understanding of their enantioselective toxicity to soil animals. Ibuprofen (IBU) is the most prevalent chiral pharmaceutical in municipal wastewater. However, its enantioselective toxicity toward soil animals and the underlying mechanism remain largely unknown.

View Article and Find Full Text PDF

Does the herbicide napropamide exhibit enantioselective effects across genus plasmid transfer from Escherichia coli to Bacillus subtilis?

J Hazard Mater

November 2024

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China. Electronic address:

Article Synopsis
  • - The study highlights the urgent issue of antibiotic resistance gene (ARG) spread in the environment, focusing on the impact of the herbicide napropamide (NAP) on plasmid transfer between bacteria.
  • - It found that R-NAP significantly enhances plasmid transfer efficiency from E. coli to Bacillus subtilis compared to its S-enantiomer, particularly at a concentration of 5 mg/L, while also affecting bacterial structures and increasing membrane permeability.
  • - The research identifies specific genes involved in this transfer and suggests that careful management of herbicides like R-NAP is necessary in agricultural settings to prevent the spread of ARGs, particularly in fields treated with livestock manure.
View Article and Find Full Text PDF

To overcome the climate crisis, various greenhouse gas (GHG) mitigation strategies have been developed, and every effort has been made to achieve carbon neutrality. Given that petroleum-based industries and the transportation sector emit enormous amounts of GHGs, the product spectra of biorefineries should be expanded beyond drop-in biofuels to include more value-added products. This study aimed to construct a CO mitigation system.

View Article and Find Full Text PDF

A Chiral COFs Membrane for Enantioselective Amino Acid Separation.

Angew Chem Int Ed Engl

November 2024

College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, & Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, 215123, P.R. China.

Incorporating chiral molecules in the covalent organic frameworks (COFs) with uniformly ordered pores results in chiral COFs, which have been highly promising candidates for enantioseparation. Herein, a homochiral COF nanochannel membrane is reported by introducing chiral centers (L-phenylalanine methyl ester) into one of the organic ligands for the enantioseparation of chiral amino acids. The separation results show that the D-isomer is preferentially transported through the porous membrane channel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!