Replicative retroviral vectors for cancer gene therapy.

Cancer Gene Ther

Biologie et Thérapeutique des Pathologies Immunitaires, CNRS/UPMC UMR 7087, Hôpital Pitié-Salpêtrière, Paris, France.

Published: January 2003

Poor efficiency of gene transfer into cancer cells constitutes the major bottleneck of current cancer gene therapy. We reasoned that because tumors are masses of rapidly dividing cells, they would be most efficiently transduced with vector systems allowing transgene propagation. We thus designed two replicative retrovirus-derived vector systems: one inherently replicative vector, and one defective vector propagated by a helper retrovirus. In vitro, both systems achieved very efficient transgene propagation. In immunocompetent mice, replicative vectors transduced >85% tumor cells, whereas defective vectors transduced <1% under similar conditions. It is noteworthy that viral propagation could be efficiently blocked by azido-thymidine, in vitro and in vivo. In a model of established brain tumors treated with suicide genes, replicative retroviral vectors (RRVs) were approximately 1000 times more efficient than defective adenoviral vectors. These results demonstrate the advantage and potential of RRVs and strongly support their development for cancer gene therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.cgt.7700521DOI Listing

Publication Analysis

Top Keywords

cancer gene
8
gene therapy
8
vector systems
8
transgene propagation
8
vectors transduced
8
replicative
4
replicative retroviral
4
retroviral vectors
4
vectors cancer
4
therapy poor
4

Similar Publications

Galectin-3 secreted by triple-negative breast cancer cells regulates T cell function.

Neoplasia

December 2024

Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Tel Aviv University, Faculty of Medicine and Health Sciences, Tel Aviv, Israel; Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Davidoff Cancer Center, Beilinson Campus, Petah Tikva, Israel. Electronic address:

Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents.

View Article and Find Full Text PDF

The incidence of neurotrophic tyrosine kinase receptor (NTRK) fusion uterine sarcoma is extremely low, and reports have been mostly focused on cases localized to the cervix. So far, only 4 cases have been reported of the uterine corpus. In this study, we reported a case of NTRK fusion corpus sarcoma.

View Article and Find Full Text PDF

Improving the selectivity and effectiveness of drugs represents a crucial issue for future therapeutic developments in immuno-oncology. Traditional bulk transcriptomics faces limitations in this context for the early phase of target discovery as resulting gene expression levels represent the average measure from multiple cell populations. Alternatively, single cell RNA sequencing can dive into unique cell populations transcriptome, facilitating the identification of specific targets.

View Article and Find Full Text PDF

Metastasis in patients with oral squamous cell carcinoma has been associated with a poor prognosis. However, sensitive and reliable tests for monitoring their occurrence are unavailable, with the exception of PET-CT. Circulating tumor cells and cell-free DNA have emerged as promising biomarkers for determining treatment efficacy and as prognostic predictors in solid tumors such as breast cancer and colorectal cancer.

View Article and Find Full Text PDF

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a dNTP hydrolase important for intracellular dNTP homeostasis and serves as tumor suppressor and modulator of antimetabolite efficacy in cancer, though largely unexplored in breast cancer (BC). A cohort of patients with early BC (n = 564) with available gene expression data (GEP) was used. SAMHD1 protein expression was assessed by immunohistochemistry performed on tissue microarrays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!