Viability of Escherichia coli after combined osmotic and thermal treatment: a plasma membrane implication.

Biochim Biophys Acta

Laboratoire de Génie des Procédés Alimentaires et Biotechnologiques, Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation, 1 Esplanade Erasme, Dijon 21000, France.

Published: December 2002

This study investigates the influence of temperature (T) and osmotic pressure (Pi) on the viability of Escherichia coli K12 during an osmotic treatment. Osmotic shock (dehydration and rehydration within 1 s) in liquid media at different temperatures (4, 10, 30 and 37 degrees C) and different levels of osmotic pressure (26, 30, 35, 40, 82 and 133 MPa) were realized. Results show that a sudden dehydration, below 40 MPa, destroyed up to 80% of the bacterial population for each tested temperature, whereas viability was greater than 90% for an osmotic pressure less than 26 MPa. The influence of T and Pi on the membrane's physical structure is finally considered to explain the results in light of FTIR and electron microscopy study of the influence of temperature and osmotic pressure on E. coli membrane phospholipids conformation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0005-2736(02)00565-5DOI Listing

Publication Analysis

Top Keywords

osmotic pressure
16
viability escherichia
8
escherichia coli
8
influence temperature
8
temperature osmotic
8
osmotic
7
coli combined
4
combined osmotic
4
osmotic thermal
4
thermal treatment
4

Similar Publications

Widespread occurrence and relevance of phosphate storage in foraminifera.

Nature

January 2025

SUGAR, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.

Foraminifera are ubiquitous marine protists that intracellularly accumulate phosphate, an important macronutrient in marine ecosystems and in fertilizer potentially leaked into the ocean. Intracellular phosphate concentrations can be 100-1,000 times higher than in the surrounding water. Here we show that phosphate storage in foraminifera is widespread, from tidal flats to the deep sea.

View Article and Find Full Text PDF

The adhesion of nanoparticles to lipid vesicles causes curvature deformations to the membrane to an extent determined by the competition between the adhesive interaction and the membrane's elasticity. These deformations can extend over length scales larger than the size of a nanoparticle, leading to an effective membrane-curvature-mediated interaction between nanoparticles. Nanoparticles with uniform surfaces tend to aggregate into unidimensionally close-packed clusters at moderate adhesion strengths and endocytose at high adhesion strengths.

View Article and Find Full Text PDF

Bioluminescence inhibition (BLI) measurements in bioluminescent bacteria (BB) is perceived as a potential qualitative and quantitative indicator of hazardous materials. Acute but minor fluctuations in osmolarity and pH do not affect the living systems significantly. However, significant BLI is observed from marine BB due to acute osmolarity or pH changes that may affect the bioassay sensitivity.

View Article and Find Full Text PDF

Potential Antibacterial of Leaf Sirih Merah Against Enterococcus Faecalis ATCC 29212 Bacteria.

Comb Chem High Throughput Screen

January 2025

Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia.

Background: Dental root canal failure is a disease caused by gram-positive bacteria, Enterococcus faecalis. The disease is caused by the bacterial cell wall consisting of a peptidoglycan layer that protects the bacteria from internal osmotic pressure. Peptidoglycan biosynthesis includes many enzymes, such as MurA, Penicillin-binding protein (PBP), and SrtA.

View Article and Find Full Text PDF

Cryptobiosis is a state where organisms lose nearly all their internal water and enter anhydrobiosis under extreme environmental stress. The dispersal third-stage juveniles (pre-dauer juveniles, ) of Bursaphelenchus xylophilus can enter cryptobiosis through dehydration and revive upon rehydration when environmental conditions improve. Osmotic regulation is crucial for their survival in this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!