The novel anti-tumor agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) was developed in the Auckland Cancer Society Research Center. Its pharmacokinetic properties have been investigated using both in vitro and in vivo models, and the resulting data extrapolated to patients. The metabolism of DMXAA has been extensively studied mainly using hepatic microsomes, which indicated that UGT1A9 and UGT2B7-catalyzed glucuronidation on its acetic acid side chain and to a lesser extent CYP1A2-catalyzed hydroxylation of the 6-methyl group are the major metabolic pathways, resulting in DMXAA acyl glucuronide (DMXAA-G) and 6-hydroxymethyl-5-methylxanthenone-4-acetic acid. The predominant metabolite in human urine (up to 60% of total dose) was identified as DMXAA-G, which was chemically reactive, undergoing hydrolysis, intramolecular rearrangement, and covalent binding to plasma proteins. In vivo formation of DMXAA-protein adducts were also observed in cancer patients receiving DMXAA treatment. The comparison of the in vitro human hepatic microsomal metabolism and inhibition of DMXA by UGT and/or CYP substrates with animal species indicated species differences. Renal microsomes from all animal species examined had glucuronidation activity for DMXAA, but lower than the liver. In vitro-in vivo extrapolations based on human microsomal data indicated a 7-fold underestimation of plasma clearance in patients. In contrast, allometric scaling using in vivo data from the mouse, rat, and rabbit predicted a plasma clearance of 3.5 mL/min/kg, similar to that observed in patients (3.7 mL/min/kg). Based on in vitro metabolic inhibition studies, it appears possible to predict the effects on the plasma kinetic profile of DMXAA of drugs such as diclofenac, which are mainly metabolized by UGT2B7. However, it did not appear possible to predict the effect of thalidomide on the pharmacokinetics of DMXAA in patients based on in vitro inhibition and animal studies. These data indicate that preclincial pharmacokinetic studies using both in vitro and in vivo models play an important but different role in predicting pharmacokinetics and drug interactions in patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1081/dmr-120015693 | DOI Listing |
J Transl Med
January 2025
Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
Background: Targeting exportin1 (XPO1) with Selinexor (SEL) is a promising therapeutic strategy for patients with multiple myeloma (MM). However, intrinsic and acquired drug resistance constitute great challenges. SEL has been reported to promote the degradation of XPO1 protein in tumor cells.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.
Background: Spinal cord injury (SCI) triggers a complex inflammatory response that impedes neural repair and functional recovery. The modulation of macrophage phenotypes is thus considered a promising therapeutic strategy to mitigate inflammation and promote regeneration.
Methods: We employed microarray and single-cell RNA sequencing (scRNA-seq) to investigate gene expression changes and immune cell dynamics in mice following crush injury at 3 and 7 days post-injury (dpi).
J Transl Med
January 2025
Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, Anhui, China.
Background: Agonistic monoclonal antibodies targeting 4-1BB/CD137 have shown preclinical promise, but their clinical development has been limited by severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy.
Methods: A novel anti-MSLN×4-1BB bispecific antibody (bsAb) was generated via antibody engineering, and its affinity and activity were detected via enzyme-linked immunosorbent assay (ELISA), flow cytometry, and T-cell activation and luciferase reporter assays.
J Transl Med
January 2025
Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
Background: Colorectal cancer (CRC) exhibits a high incidence globally, with the liver being the most common site of distant metastasis. At the time of diagnosis, 20-30% of CRC patients already present with liver metastases. Colorectal liver metastasis (CRLM) is a major cause of mortality among CRC patients.
View Article and Find Full Text PDFPharm Res
January 2025
Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Purpose: Recombinant human B-type natriuretic peptide (rhBNP) has been extensively proven to be an effective mean of heart failure (HF) therapy, but its clinical application is limited by its very short half-life. This study aims to combine in vitro transcribed mRNA (IVT mRNA) and fusion protein technology to develop a rhBNP-Fc mRNA drug with long half-life, high efficiency and few side effects to treat HF.
Methods: The rhBNP-Fc fusion mRNA with IgG4-Fc sequence was produced by IVT technology.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!