Correlated calcium uptake and release by mitochondria and endoplasmic reticulum of CA3 hippocampal dendrites after afferent synaptic stimulation.

J Neurosci

Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-4062, USA.

Published: December 2002

Mitochondria and endoplasmic reticulum (ER) are important modulators of intracellular calcium signaling pathways, but the role of these organelles in shaping synaptic calcium transients in dendrites of pyramidal neurons remains speculative. We have measured directly the concentrations of total Ca (bound plus free) within intracellular compartments of proximal dendrites of CA3 hippocampal neurons at times after synaptic stimulation corresponding to the peak of the cytoplasmic free Ca2+ transient (1 sec), to just after its decay (30 sec), and to well after its return to prestimulus levels (180 sec). Electron probe microanalysis of cryosections from rapidly frozen slice cultures has revealed that afferent mossy fiber stimulation evokes large, rapid elevations in the concentration of total mitochondrial Ca ([Ca](mito)) in depolarized dendrites. A single tetanus (50 Hz/1 sec) elevated [Ca](mito) more than fivefold above characteristically low basal levels within 1 sec of stimulation and >10-fold by 30 sec after stimulation. This strong Ca accumulation was reversible, because [Ca](mito) had recovered by 180 sec after the tetanus. Ca sequestered within mitochondria was localized to small inclusions that were distributed heterogeneously within, and probably among, individual mitochondria. By 30 sec after stimulation an active subpopulation of ER cisterns had accumulated more Ca than had mitochondria despite a approximately 1 sec delay before the onset of accumulation. Active ER cisterns retained their Ca load much longer (>3 min) than mitochondria. The complementary time courses of mitochondrial versus ER Ca2+ uptake and release suggest that these organelles participate in a choreographed interplay, each shaping dendritic Ca2+ signals within characteristic regimes of cytosolic Ca2+ concentration and time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6758462PMC
http://dx.doi.org/10.1523/JNEUROSCI.22-24-10653.2002DOI Listing

Publication Analysis

Top Keywords

uptake release
8
mitochondria endoplasmic
8
endoplasmic reticulum
8
ca3 hippocampal
8
synaptic stimulation
8
mitochondria
6
stimulation
6
correlated calcium
4
calcium uptake
4
release mitochondria
4

Similar Publications

With the unique photo-physical properties and strong bio-compatibility. Quantum dots (QDs) have sparked interest in biomedical fields such as imaging, biosensing and therapeutics. However, the low stability and insufficient tumor specificity have largely constrained their potential biomedical applications.

View Article and Find Full Text PDF

Breast cancer remains one of the most prevalent and deadly cancers among women worldwide, necessitating the development of more effective and comprehensive treatment strategies. In this study, we successfully synthesized mesoporous polydopamine (MPDA) with photothermal effects for the co-delivery of the chemotherapeutic drug doxorubicin (DOX) and the immune adjuvant imiquimod (R837), resulting in the development of a multifunctional nanoplatforms termed MDR. MDR displayed excellent photothermal conversion efficiency and pH-responsive drug release behavior.

View Article and Find Full Text PDF

Following the COVID-19 pandemic, the Malawi Government released a policy that promoted the scale-up of six-monthly multi-month dispensing (6-MMD) of antiretroviral therapy (ART) to people living with HIV in order to decrease congestion at health facilities and transmission of COVID-19. We evaluated the barriers and facilitators to implementing the scale-up of 6-MMD.We conducted a cross-sectional study and collected quantitative and qualitative data from 13 January 2022 to 5 February 2022 at two high-volume primary health facilities in urban Blantyre, Malawi.

View Article and Find Full Text PDF

Solid lipid nanoparticles for increased oral bioavailability of acalabrutinib in chronic lymphocytic leukaemia.

Discov Nano

December 2024

Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India.

Acalabrutinib (ACP) is a first-line treatment for chronic lymphocytic leukemia but suffers from poor and variable oral bioavailability due to its pH-dependent solubility, CYP3A4 metabolism, and P-gp efflux. Thus, the objective of this study was to improve the solubility and dissolution behaviour, in turn enhancing bioavailability, by formulating solid lipid nanoparticles (SLNs). ACP loaded SLNs (ACP-SLNs) were prepared via solvent-free hot emulsification followed by a double sonication process.

View Article and Find Full Text PDF

Background: Granulomatosis with polyangiitis (GPA) is an autoimmune multisystem disorder characterized by small vessel vasculitis with granulomatous inflammation. In this report, we describe a unique case of GPA who presented with complete heart block (CHB) and developed complications due to intracranial large vessel involvement.

Case Summary: A 47-year-old gentleman presented with CHB with a background history of arthralgia and blood-tinged nasal discharge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!