We have studied the formation of different types of cell matrix adhesions in cells that bind to fibronectin via either alpha5beta1 or alphavbeta3. In both cases, cell adhesion to fibronectin leads to a rapid decrease in RhoA activity. However, alpha5beta1 but not alphavbeta3 supports high levels of RhoA activity at later stages of cell spreading, which are associated with a translocation of focal contacts to peripheral cell protrusions, recruitment of tensin into fibrillar adhesions, and fibronectin fibrillogenesis. Expression of an activated mutant of RhoA stimulates alphavbeta3-mediated fibrillogenesis. Despite the fact that alpha5beta1-mediated adhesion to the central cell-binding domain of fibronectin supports activation of RhoA, other regions of fibronectin are required for the development of alpha5beta1-mediated but not alphavbeta3-mediated focal contacts. Using chimeras of beta1 and beta3 subunits, we find that the extracellular domain of beta1 controls RhoA activity. By expressing both beta1 and beta3 at high levels, we show that beta1-mediated control of the levels of beta3 is important for the distribution of focal contacts. Our findings demonstrate that the pattern of fibronectin receptors expressed on a cell dictates the ability of fibronectin to stimulate RhoA-mediated organization of cell matrix adhesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2173988PMC
http://dx.doi.org/10.1083/jcb.200205014DOI Listing

Publication Analysis

Top Keywords

alpha5beta1 alphavbeta3
12
cell matrix
12
matrix adhesions
12
rhoa activity
12
focal contacts
12
organization cell
8
fibronectin
8
adhesions fibronectin
8
fibronectin fibrillogenesis
8
high levels
8

Similar Publications

Cancer-associated fibroblasts (CAF) generate an extracellular matrix (ECM) which provides a repository for factors that promote pancreatic cancer progression. Here, we establish that CAF contribution to pancreatic tumor initiation, i.e.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is a complex meshwork comprising over 100 proteins. It serves as an adhesive substrate for cells and, hence, plays critical roles in health and disease. We have recently identified a novel ECM protein, SNED1, and have found that it is required for neural crest cell migration and craniofacial morphogenesis during development and in breast cancer, where it is necessary for the metastatic dissemination of tumor cells.

View Article and Find Full Text PDF

The integration of integrin-binding peptides within self-assembling building blocks is crucial for the development of targeted nanoarchitectonics. However, such constructs typically incorporate only a single integrin-binding peptide, limiting their multifunctionality. Herein, a rationally designed self-assembling peptide with dual integrin-binding motifs for α5β1 and αvβ3 is presented.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding how the arrangement of adhesive ligands affects cell behavior is key for biomaterial design.
  • This study examines the effect of different RGD ligand spacings (30 nm vs. 150 nm) on human mesenchymal stromal cells using specialized hydrogels.
  • Results showed that smaller spacings encouraged larger cell spreading, while larger spacings led to elongated shapes, with the αβ integrin being crucial in mediating these changes.
  • These findings enhance our knowledge of cell-material interactions and can inform the design of biomaterials for better tissue engineering outcomes.
View Article and Find Full Text PDF

2D agarose substrates have recently been surprisingly shown to be permissive for cell adhesion, depending on their mechanics and the use of the adhesive proteins of fetal bovine serum (FBS) in the cell culture medium. Here, we elucidate how the cells exhibit two anchoring mechanisms depending on the amount of FBS. Under low FBS conditions, the cells recognize the surface-coupled adhesive sequences of fibronectin via the binding of the heterodimer αβ integrin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!