We recently demonstrated that polysome-associated mRNAs that co-isolate with mitochondria encode a subset of mitochondrial proteins, and that the 3' UTRs of these transcripts are essential for their localization to the vicinity of the organelle. To address the question of the involvement of the mRNA targeting process in mitochondrial biogenesis, we studied the role of ATP2 3' UTR. An altered ATP2 allele in which the 3' UTR was replaced by the ADH1 3' UTR exhibits properties supporting the importance of mRNA localization to the vicinity of mitochondria: (i) the mutated strain presents a respiratory dysfunction; (ii) mitochondrial import of the protein translated from the altered gene is strongly reduced, even though the precursor is addressed to the organelle surface; (iii) systematic deletions of ATP2 3' UTR revealed a 100 nucleotide element presenting RNA targeting properties. Additionally, when the ATM1 3' UTR was replaced by the ADH1 3' UTR, we obtained cells in which ATM1 mRNA is also delocalized, and presenting a respiratory dysfunction. This demonstrates that mRNA localization to the vicinity of mitochondria plays a critical role in organelle biogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC139110 | PMC |
http://dx.doi.org/10.1093/emboj/cdf690 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!