Phencyclidine (PCP) was analyzed for its ability to inactivate human cytochrome p450 (p450) 2B6. PCP inactivated the 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation activity of p450 2B6 in a concentration-, time-, and NADPH-dependent manner and exhibited pseudo-first order kinetics. The K(I) was 10 microM, k(inact) was 0.01 min(-1), which corresponds to a t(1/2) of 31 min. The partition ratio was approximately 45. Spectral analysis of the heme moiety demonstrated that the heme was not modified during inactivation. Extensive dialysis of the PCP-inactivated p450 2B6 did not cause a return in catalytic activity demonstrating PCP inactivation was irreversible. Including 7-ethoxycoumarin, an alternate substrate, protected 2B6 from inactivation by PCP indicating competition of the two substrates for the active site. Exogenous nucleophiles such as glutathione (GSH) and cyanide could not protect p450 2B6 from PCP inactivation demonstrating that the reactive intermediate remained within the p450 active site. High performance liquid chromatography analysis of p450 2B6 inactivated in the presence of (3)H-labeled PCP showed that PCP binding was specific for the p450 and not to other proteins in the reaction mixture. The stoichiometry of binding of PCP to p450 2B6 was demonstrated using (3)H-labeled PCP. In the absence of GSH, the stoichiometry was 5.5:1 (PCP/p450). In the presence of GSH, the stoichiometry was 1:1. This stoichiometry was further supported using electrospray ionization-liquid chromatography-mass spectrometry to analyze PCP-inactivated p450 2B1, 2B4, and 2B6.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/dmd.31.1.46 | DOI Listing |
Forensic Sci Int Genet
December 2024
Service de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d'Angers, Angers, France.
Interpreting postmortem concentrations of 3,4-Methylenedioxymethamphetamine (MDMA) remains challenging due to the wide range of reported results and the potential idiosyncratic nature of MDMA toxicity. Consequently, forensic pathologists often rely on a body of evidence to establish conclusions regarding the cause and the manner of death in death involving MDMA. Given these issues, implementing pharmacogenetics' (PGx)' testing may be beneficial.
View Article and Find Full Text PDFBackground: (), which possesses various biological effects, has been widely used as traditional medicine and functional food in Asian countries, especially China. In consideration of its various biological effects on human healthcare, . was usually used in combination with other drugs.
View Article and Find Full Text PDFBMC Anesthesiol
November 2024
Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland.
Background: In clinical practice, family medication history is not routinely assessed as part of a patient's family health history (FHH). The information is self-reported and can depend on the individual's subjective perception. To illustrate how pharmacogenetic (PGx) testing results could be used to validate self-reported family medication history on drug-related problems (DRP), as well as to inform medication-related decisions, we herein present a case involving ten members of the same family.
View Article and Find Full Text PDFCurr Med Chem
October 2024
Department of Medical Biochemistry and Biotechnology, Russian-Armenian University, Yerevan, 0051, Armenia.
Introduction: Alzheimer's disease (AD) is the most common neurodegenerative disease in older people, characterized by the accumulation of beta-amyloid (Aβ) plaques and neurofibrillary tangles composed of aggregated of hyperphosphorylated tau protein, which normally helps stabilize microtubules in neurons.
Method: Nowadays, artemisinin (ART) as well as its semisynthetic derivatives (ARTs) are seen as potential neuroprotectors. The goal of the present study is the assessment of neuroprotective, antibacterial activity of ART, as well as in silico studies of ART affinity to Aβ-peptides and the search of potential targets for ART.
Drug Metab Dispos
November 2024
Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!