In vitro behavior of HVOF sprayed calcium phosphate splats and coatings.

Biomaterials

School of Mechanical & Production Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore 639798, Singapore.

Published: February 2003

Hydroxyapatite (HA) coatings and splats deposited by high velocity oxy-fuel (HVOF) spray technique was investigated in vitro. HA coatings prepared from two different HA powder size range (30+/-5 and 50 +/-5 microm) were immersed in a simulated body fluid with various incubation periods of maximum 6 weeks. The dissolution/precipitation behavior was studied and the degradation of HA coatings caused by in vitro ageing was demonstrated by measuring the changes in flexural modulus through a 3-point bend test. It was found that the dissolution and precipitation behavior of the coatings was significantly dependent upon the incipient coating phase composition and the precipitation of bone-like hydroxyapatite on the coating's surface was found to be directly related to the dissolution process. Higher dissolution rates of tricalcium phosphate, tetracalcium phosphate and amorphous calcium phosphate relative to HA, resulted in accelerated precipitation. Furthermore, analysis of coatings' surface morphology demonstrated that advanced precipitation invariably occurred at regions where dissolution took place. Results showed that the changes in flexural modulus of investigated HA coatings accompanying different incubation duration was not systematic but was found to be dependent upon changes of coating structure and other factors brought about by in vitro ageing. In vitro investigation of individual HA splats collected from different HA particle sizes revealed, after 3 days ageing, that the rate ratio of precipitation to dissolution was directly determined by the local phase composition, and this phenomenon could be effectively used to explain the behavior of thermally sprayed HA coatings in vitro. It implied that the precipitation was strongly dependent on the first molecule attachment. To achieve rapid precipitation in vitro, partial molten state of HA particles during HVOF coating deposition was recommended.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0142-9612(02)00404-0DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
8
vitro ageing
8
changes flexural
8
flexural modulus
8
phase composition
8
vitro
7
coatings
7
precipitation
7
dissolution
5
vitro behavior
4

Similar Publications

As one of the most promising means to repair diseased tissues, stem cell therapy with immense potential to differentiate into mature specialized cells has been rapidly developed. However, the clinical application of stem-cell-dominated regenerative medicine was heavily hindered by the loss of pluripotency during the long-term in vitro expansion. Here, a composite three-dimensional (3D) graphene-based biomaterial, denoted as GO-Por-CMP@CaP, with hierarchical pore structure (micro- to macropore), was developed to guide the directional differentiation of human umbilical cord MSCs (hucMSCs) into osteoblasts.

View Article and Find Full Text PDF

Bovine milk contains four types of caseins with β-casein being one of the most abundant. Previous studies on cow milk have reported seemingly contradictory effects of β-casein on milk renneting behavior. The aim of this study was to gain a better understanding of how β-casein affects the properties and renneting behavior of casein micelles by using a model system of reassembled casein micelles (RCMs).

View Article and Find Full Text PDF

This study evaluated a dual management approach to enhance plant-growth by improving soil fertility, reducing pathogenic stress using PGPR that affect phosphorus-transporter (pht) genes. Among 213 maize rhizobacterial isolates, 40 demonstrated the ability to solubilize tri-calcium phosphate, potassium, zinc, and silicon, showing various PGP traits. Nine of these isolates exhibited significant antagonistic activity against the plant pathogens Colletotrichum chlorophyti and Xanthomonas axonopodis.

View Article and Find Full Text PDF

Biophysical stimuli such as alternating electrical fields can mimic endogenous electrical potentials and currents in natural bone. This can help to improve the healing and reconstruction of bone tissue. However, little is known about the combined influence of biomaterials and alternating electric fields on bone cells.

View Article and Find Full Text PDF

The enzyme-catalyzed synthesis of calcium phosphate is a promising method for producing calcium-based nanomaterials for biomedical applications. The purpose of this work was to determine the type of phosphate that forms when alkaline phosphatase catalyzes the reaction, and to identify the role of natural biopolymers in calcium phosphate formation. In this research, we analyzed calcium phosphates that were synthesized in the presence of alkaline phosphatase from either E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!