The neural cell adhesion molecule, NCAM, not only plays an important role in neuronal migration, differentiation and formation of connections in the developing nervous system, but also in the condensation of the mesodermal mesenchyme of the limb bud. Therefore, NCAM may be regarded as a target molecule for preventive strategies aimed at minimizing the effects of teratogens affecting the prenatal development of the nervous system and the skeleton. Treatment of fetuses with the teratogen pyrimethamine results in a reduced body weight, microcephaly and malformations of the hind limbs and forelimbs, e.g. micromelia, brachydactyly and adactyly. We here show that a peptide agonist of NCAM, C3, partly prevented the defects induced by this treatment. Although intra-amniotic administration of C3 at gestational day 14 had no effect on the pyrimethamine-induced reduction in body weight, it rescued the deficit in brain weight (microcephaly), partly reversed a decrease in thickness of the cortical plate, and significantly reduced the number of malformed fetuses. In vitro, C3 promoted survival of PC12-E2 cells treated with pyrimethamine. Since C3 is a peptide mimetic of NCAM, our data strongly suggest that stimulating of NCAM results in neuroprotection in vivo and in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0736-5748(02)00086-2DOI Listing

Publication Analysis

Top Keywords

peptide agonist
8
neural cell
8
cell adhesion
8
adhesion molecule
8
molecule ncam
8
defects induced
8
teratogen pyrimethamine
8
nervous system
8
body weight
8
weight microcephaly
8

Similar Publications

Background: The gonadotropin-releasing hormone antagonist (GnRH-ant) protocol is associated with few oocytes retrieved, few mature oocytes and poor endometrial receptivity. Omission of GnRH-ants on trigger day seems unlikely to induce preovulation and may improve outcomes in the GnRH-ant protocol. This study aimed to systematically evaluate the effects of GnRH-ant cessation on trigger day on in vitro fertilisation outcomes following the GnRH-ant protocol.

View Article and Find Full Text PDF

Dexmedetomidine accelerates photoentrainment and affects sleep structure through the activation of SCN neurons.

Commun Biol

December 2024

Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.

Dexmedetomidine (DexM), a highly selective α-adrenoceptor agonist, significantly reduces postoperative adverse effects, including sleep and circadian rhythm disruptions. Vasoactive intestinal peptide neurons in the suprachiasmatic nucleus (SCN) regulate the synchronization of circadian rhythms with the external environment in mammals. We investigate the effects of DexM on sleep and circadian rhythms, as well as the underlying mechanisms.

View Article and Find Full Text PDF

We describe a structural and functional study of the G protein-coupled apelin receptor, which binds two endogenous peptide ligands, apelin and Elabela/Toddler (ELA), to regulate cardiovascular development and function. Characterisation of naturally occurring apelin receptor variants from the UK Genomics England 100,000 Genomes Project, and AlphaFold2 modelling, identifies T89 as important in the ELA binding site, and R168 as forming extensive interactions with the C-termini of both peptides. Base editing to introduce an R/H168 variant into human stem cell-derived cardiomyocytes demonstrates that this residue is critical for receptor binding and function.

View Article and Find Full Text PDF

Background/aim: G protein-coupled estrogen receptor 1 (GPER1) appears to play a tumor-suppressive role in cervical squamous cell carcinoma (CSCC)GPER1 suppression leads to significantly increased expression of serpin family E member 1 (SERPINE1)/protein plasminogen activator inhibitor type 1 (PAI-1). The question arises, what role does SERPINE1/PAI-1 play in GPER1-dependent tumorigenic potential of CSCC.

Materials And Methods: SiHa and C33A CSCC cells were treated with GPER1 agonist G1 or antagonist G36.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!