Magnetization-direction-dependent local electronic structure probed by scanning tunneling spectroscopy.

Phys Rev Lett

Institute of Applied Physics and Microstructure Research Center, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany.

Published: December 2002

Scanning tunneling spectroscopy (STS) of thin Fe films on W(110) shows that the electronic structure of domains and domain walls is different. This experimental result is explained on the basis of first-principles calculations. A detailed analysis reveals that the spin-orbit induced mixing between minority d(xy+xz) and minority d(z(2)) spin states depends on the magnetization direction and changes the local density of states in the vacuum detectable by STS. As a consequence nanometer-scale magnetic structure information is obtained even by using nonmagnetic probe tips.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.89.237205DOI Listing

Publication Analysis

Top Keywords

electronic structure
8
scanning tunneling
8
tunneling spectroscopy
8
magnetization-direction-dependent local
4
local electronic
4
structure probed
4
probed scanning
4
spectroscopy scanning
4
spectroscopy sts
4
sts thin
4

Similar Publications

Migrasome formation is initiated preferentially in tubular junctions by membrane tension.

Biophys J

January 2025

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:

Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.

View Article and Find Full Text PDF

Bioinspired thermally conducting packaging for heat management of high performance electronic chips.

Commun Eng

January 2025

Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China.

Conventional electronic chip packaging generates a huge thermal resistance due to the low thermal conductivity of the packaging materials that separate chip dies and coolant. Here we propose and fabricate a closed high-conducting heat chip package based on passive phase change, using silicon carbide which is physically and structurally compatible with chip die materials. Our "chip on vapor chamber" (CoVC) concept realizes rapid diffusion of hot spots, and eliminates the high energy consumption of refrigeration ordinarily required for heat management.

View Article and Find Full Text PDF

Amyloidogenic protein aggregation is a pathological hallmark of Alzheimer's Disease (AD). As such, this critical feature of the disease has been instrumental in guiding research on the mechanistic basis of disease, diagnostic biomarkers and preventative and therapeutic treatments. Here we review identified molecular triggers and modulators of aggregation for two of the proteins associated with AD: amyloid beta and tau.

View Article and Find Full Text PDF

Evaluation and Management of the External Nasal Valve.

Otolaryngol Clin North Am

January 2025

Department of Otolaryngology-Head and Neck Surgery, Division of Facial Plastic and Reconstructive Surgery, Henry Ford Hospital, 2799 West Grand Boulevard K-8, Detroit, MI 48202, USA; Department of Surgery, Michigan State University, 4660 South Hagadorn Road, Suite #620, East Lansing, MI 48823, USA; Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.

The external nasal valve is the anatomic structure formed by the caudal septum, alar rim, medial crura of the lower lateral cartilage, and nasal sill at the level of the nasal vestibule. Evaluation of external nasal valve dysfunction is dependent upon a thorough history and physical examination. Symptoms and quality of life impact are the main drivers for patients to seek out clinical evaluation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!