A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simplifying a prognostic model: a simulation study based on clinical data. | LitMetric

Simplifying a prognostic model: a simulation study based on clinical data.

Stat Med

Department of Statistical Science, University College, 1-19 Torrington Place, London WC1E 7HB, UK.

Published: December 2002

Prognostic models are designed to predict a clinical outcome in individuals or groups of individuals with a particular disease or condition. To avoid bias many researchers advocate the use of full models developed by prespecifying predictors. Variable selection is not employed and the resulting models may be large and complicated. In practice more parsimonious models that retain most of the prognostic information may be preferred. We investigate the effect on various performance measures, including mean square error and prognostic classification, of three methods for estimating full models (including penalized estimation and Tibshirani's lasso) and consider two methods (backwards elimination and a new proposal called stepdown) for simplifying full models. Simulation studies based on two medical data sets suggest that simplified models can be found that perform nearly as well as, or sometimes even better than, full models. Optimizing the Akaike information criterion appears to be appropriate for choosing the degree of simplification.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.1422DOI Listing

Publication Analysis

Top Keywords

full models
16
models
8
simplifying prognostic
4
prognostic model
4
model simulation
4
simulation study
4
study based
4
based clinical
4
clinical data
4
data prognostic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!