mi-er1 (previously called er1) was first isolated from Xenopus laevis embryonic cells as a novel fibroblast growth factor-regulated immediate-early gene. Xmi-er1 was shown to encode a nuclear protein with an N-terminal acidic transcription activation domain. The human orthologue of mi-er1 (hmi-er1) displays 91% similarity to the Xenopus sequence at the amino acid level and was shown to be upregulated in breast carcinoma cell lines and tumors. Alternative splicing at the 3' end of hmi-er1 produces two major isoforms, hMI-ER1alpha and hMI-ER1beta, which contain distinct C-terminal domains. In this study, we investigated the role of hMI-ER1alpha and hMI-ER1beta in the regulation of transcription. Using fusion proteins of hMI-ER1alpha or hMI-ER1beta tethered to the GAL4 DNA binding domain, we show that both isoforms, when recruited to the G5tkCAT minimal promoter, function to repress transcription. We demonstrate that this repressor activity is due to interaction and recruitment of a trichostatin A-sensitive histone deacetylase 1 (HDAC1). Furthermore, deletion analysis revealed that recruitment of HDAC1 to hMI-ER1alpha and hMI-ER1beta occurs through their common ELM2 domain. The ELM2 domain was first described in the Caenorhabditis elegans Egl-27 protein and is present in a number of SANT domain-containing transcription factors. This is the first report of a function for the ELM2 domain, highlighting its role in the regulation of transcription.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC140656 | PMC |
http://dx.doi.org/10.1128/MCB.23.1.250-258.2003 | DOI Listing |
J Am Heart Assoc
July 2024
Department of Biomedical Engineering, Heersink School of Medicine, School of Engineering University of Alabama at Birmingham Birmingham AL.
J Biol Chem
May 2023
Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden. Electronic address:
To chemically modulate the ubiquitin-proteasome system for the degradation of specific target proteins is currently emerging as an alternative therapeutic modality. Earlier, we discovered such properties of the stem cell-supporting small molecule UM171 and identified that members of the CoREST complex (RCOR1 and LSD1) are targeted for degradation. UM171 supports the in vitro propagation of hematopoietic stem cells by transiently perturbing the differentiation-promoting effects of CoREST.
View Article and Find Full Text PDFAutophagy
October 2019
a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University, Chengdu , China.
Unlabelled: Autophagy is essential for appressorium-mediated plant infection by Magnaporthe oryzae, the causal agent of rice blast disease and a major threat to global food security. The regulatory mechanism of pathogenicity-associated autophagy, however, remains largely unknown. Here, we report the identification and functional characterization of a plausible ortholog of yeast SNT2 in M.
View Article and Find Full Text PDFPLoS One
August 2017
Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
The mier family consists of three related genes encoding ELM2-SANT containing proteins. MIER1 has been well characterized and is known to function in transcriptional repression through its ability to recruit HDAC1 and 2. Little is known about MIER2 or MIER3 function and no study characterizing these two proteins has been published.
View Article and Find Full Text PDFACS Nano
July 2015
‡CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100190, China.
The treatment of pancreatic cancer frequently fails due to local recurrence and hepatic metastasis. Our previous study found that Gd@C82(OH)22 can suppress pancreatic cancer by inhibiting MMP-2/9 expression. In this study, we further explored the epigenetic mechanism of Gd@C82(OH)22 in human pancreatic cancer metastasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!