Members of the spalt family of zinc finger-containing proteins have been implicated in development and disease. However, very little is known about the molecular function of spalt proteins. We have used biochemical approaches to characterize functional domains of two chick spalt homologs, csal1 and csal3. We show that csal1 and csal3 proteins repress transcription and that they can interact with each other. Furthermore, we found that truncated chick spalt proteins, similar to the truncated spalt protein expressed in the human congenital disorder Townes-Brocks syndrome, affect the nuclear localization of full-length spalt. Our findings have implications for the understanding of Townes-Brocks syndrome and the role of spalt genes in normal development. We propose that truncated spalt can exert a dominant negative effect and is able to interfere with the correct function of full-length protein, by causing its displacement from the nucleus. This could affect the transcriptional repressor activity of spalt and DNA binding. Spalt protein truncations could also affect the function of other spalt family members in various tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M209066200 | DOI Listing |
Biol Reprod
November 2019
Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA.
SALL1 and SALL3 are transcription factors that play an essential role in regulating developmental processes and organogenesis in many species. However, the functional role of SALL1 and SALL3 in chicken prehierarchical follicle development is unknown. This study aimed to explore the potential role and mechanism of csal1 and csal3 in granulosa cell proliferation, differentiation, and follicle selection within the prehierarchical follicles of hen ovary.
View Article and Find Full Text PDFJ Biol Chem
February 2003
School of Biological Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, United Kingdom.
Members of the spalt family of zinc finger-containing proteins have been implicated in development and disease. However, very little is known about the molecular function of spalt proteins. We have used biochemical approaches to characterize functional domains of two chick spalt homologs, csal1 and csal3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!