Background/objective: Nutritional dwarfing (ND) consists of a decrease in weight and height gain and delayed onset of puberty. The aim of the present investigation was to study the modifications induced in male rats by the nutritional stress of a mere 20% reduction in food intake which, however, started immediately after weaning.

Materials And Methods: At weaning, male Wistar rats were divided into two groups: Control (C) and ND. C rats were fed ad libitum with a balanced rodent diet. ND received 80% of the diet consumed by C for 4 weeks (T4); then they were fed ad libitum for another 4 (T8) and 8 weeks (T12). The rats were studied at T0, T4, T8 and T12 for the effects of nutritional stress and refeeding on nutritional status, body composition, hypothalamic-pituitary-gonadal axis, and sperm morphology and concentration.

Results: ND body weight and length diminished vs. C (p < 0.001). ND body fat percentage decreased 40% (p < 0.001) without change in the percentage of body protein content. The hypothalamic content of LHRH did not change. However, FSH, LH and testosterone serum levels had significantly decreased (p < 0.001) at T4 in ND rats. A 48.4 % decrease in serum leptin in the ND group was observed at T4 (p < 0.05). The absolute testicular and seminal vesicle weight was significantly decreased by ND at T4 (p < 0.001). At T4 the percentage of anomalies of caudal spermatozoa increased in about 64% (p < 0.001) of ND vs. C rats, despite the unchanged sperm concentrations. All parameters normalized during refeeding.

Conclusion: In this model, a decrease in leptin due to nutritional stress could be responsible, at least in part, for the inhibition of reproductive function. Refeeding normalized all parameters studied.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000067177DOI Listing

Publication Analysis

Top Keywords

nutritional stress
16
fed libitum
8
decreased 0001
8
0001 rats
8
nutritional
6
rats
6
0001
5
stress hypothalamo-pituitary-gonadal
4
hypothalamo-pituitary-gonadal axis
4
axis growing
4

Similar Publications

Background: In Malawi, women in prisons make up 2.7% of the total prison population. However, the experiences of women incarcerated are not well documented in the literature.

View Article and Find Full Text PDF

The current investigation assessed the beneficial impacts of dietary sodium chloride (NaCl) on the growth performance, oxidant/antioxidant, and immune responses of Nile tilapia (Oreochromis niloticus) and its adaptability to different salinity levels. After acclimating the fish to the laboratory conditions for 2 weeks, the acclimated fish (10.5 ± 0.

View Article and Find Full Text PDF

Activation of the De Novo Serine Synthesis Pathway and Disruption of Insulin Signaling Induced by Supplemental SeMet in Vitro.

Biol Trace Elem Res

January 2025

Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.

Selenium (Se) intake or selenoprotein overexpression can cause abnormal glucose metabolism and increase the risk of type 2 diabetes (T2D). The purpose of this study is to observe whether glycolysis bypass in the de novo serine synthesis pathway (SSP) is activated under high-Se stress in vitro. Initially, HCT-116, L02, HepG2, and differentiated C2C12 cells were exposed to five selenomethionine (SeMet) concentrations (0.

View Article and Find Full Text PDF

Introduction: Cardiovascular diseases (CVDs) present differently in women and men, influenced by host-microbiome interactions. The roles of sex hormones in CVD outcomes and gut microbiome in modifying these effects are poorly understood. The XCVD study examines gut microbiome mediation of sex hormone effects on CVD risk markers by observing transgender participants undergoing gender-affirming hormone therapy (GAHT), with findings expected to extrapolate to cisgender populations.

View Article and Find Full Text PDF

Nose-to-brain delivery of DHA-loaded nanoemulsions: A promising approach against Alzheimer's disease.

Int J Pharm

January 2025

MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France. Electronic address:

Reduced docosahexaenoic acid (DHA) concentrations seem to be associated with an increased risk of Alzheimer's disease (AD), and DHA accretion to the brain across the blood-brain-barrier (BBB) can be modulated by various factors. Therefore, there is an urgent need to identify an efficient and non-invasive method to ensure brain DHA enrichment. In the present study, a safe and stable DHA-enriched nanoemulsion, designed to protect DHA against oxidation, was designed and administered intranasally in a transgenic mouse model of AD, the J20 mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!