Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The molecular conformation of peptide fragment 105-115 of transthyretin, TTR(105-115), previously shown to form amyloid fibrils in vitro, has been determined by magic-angle spinning solid-state NMR spectroscopy. 13C and 15N linewidth measurements indicate that TTR(105-115) forms a highly ordered structure with each amino acid in a unique environment. 2D 13C-13C and 15N-13C-13C chemical shift correlation experiments, performed on three fibril samples uniformly 13C,15N-labeled in consecutive stretches of 4 aa, allowed the complete sequence-specific backbone and side-chain 13C and 15N resonance assignments to be obtained for residues 105-114. Analysis of the 15N, 13CO, 13Calpha, and 13Cbeta chemical shifts allowed quantitative predictions to be made for the backbone torsion angles phi and psi. Furthermore, four backbone 13C-15N distances were determined in two selectively 13C,15N-labeled fibril samples by using rotational-echo double-resonance NMR. The results show that TTR(105-115) adopts an extended beta-strand conformation that is similar to that found in the native protein except for substantial differences in the vicinity of the proline residue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC139215 | PMC |
http://dx.doi.org/10.1073/pnas.252625999 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!