Structural and functional cardiac anisotropy varies with the development, location, and pathophysiology in the heart. The goal of this study was to design a cell culture model system in which the degree, change in fiber direction, and discontinuity of anisotropy can be controlled over centimeter-size length scales. Neonatal rat ventricular myocytes were cultured on fibronectin on 20-mm diameter circular cover slips. Structure-function relationships were assessed using immunostaining and optical mapping. Cell culture on microabraded cover slips yielded cell elongation and coalignment in the direction of abrasion, and uniform, macroscopically continuous, elliptical propagation with point stimulation. Coarser microabrasion (wider and deeper abrasion grooves) increased longitudinal (23.5 to 37.2 cm/s; r=0.66) and decreased transverse conduction velocity (18.1 to 9.2 cm/s; r=-0.84), which resulted in increased longitudinal-to-transverse velocity anisotropy ratios (1.3 to 3.7, n=61). A thin transition zone between adjacent uniformly anisotropic areas with 45 degrees or 90 degrees difference in fiber orientation acted as a secondary source during 2x threshold field stimulus. Cell culture on cover slips micropatterned with 12- or 25- micro m wide fibronectin lines and previously coated with decreasing concentrations of background fibronectin yielded transition from continuous to discontinuous anisotropic architecture with longitudinally oriented intercellular clefts, decreased transverse velocity (16.9 to 2.6 cm/s; r=-0.95), increased velocity anisotropy ratios (1.6 to 5.6, n=70), and decreased longitudinal velocity (36.4 to 14.6 cm/s; r=-0.85) for anisotropy ratios >3.5. Cultures of cardiac myocytes with controlled degree, uniformity and continuity of structural, and functional anisotropy may enable systematic 2-dimensional in vitro studies of macroscopic structure-related mechanisms of reentrant arrhythmias. The full text of this article is available at http://www.circresaha.org.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.res.0000047530.88338.ebDOI Listing

Publication Analysis

Top Keywords

cell culture
12
cover slips
12
anisotropy ratios
12
structural functional
8
decreased transverse
8
velocity anisotropy
8
anisotropy
7
velocity
5
cardiomyocyte cultures
4
cultures controlled
4

Similar Publications

Background Aims: Extracellular vesicles (EVs) have gained traction as potential cell-free therapeutic candidates. Development of purification methods that are scalable and robust is a major focus of EV research. Yet there is still little in the literature that evaluates purification methods against potency of the EV product.

View Article and Find Full Text PDF

Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG).

View Article and Find Full Text PDF

Cervical cancer (CESC) presents significant clinical challenges due to its complex tumor microenvironment (TME) and varied treatment responses. This study identified undifferentiated M0 macrophages as high-risk immune cells critically involved in CESC progression. Co-culture experiments further demonstrated that M0 macrophages significantly promoted HeLa cell proliferation, migration, and invasion, underscoring their pivotal role in modulating tumor cell behavior within the TME.

View Article and Find Full Text PDF

Background: The healthcare sector faces a growing threat from the rise of highly resistant microorganisms, particularly Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDR P. aeruginosa). Facing the challenge of antibiotic resistance, nanoparticles have surfaced as promising substitutes for antimicrobial therapy.

View Article and Find Full Text PDF

Colon cancer is a leading cause of cancer-related deaths worldwide and has been increasingly linked to the gut microbiome. Clostridium butyricum (CB), a probiotic, has demonstrated potential in influencing colon cancer cell behavior, particularly through the modulation of long non-coding RNAs (lncRNAs) and mRNAs. This study examines the effects of CB on the expression of lncRNAs and mRNAs in SW480 colon cancer cells and their association with apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!