Regulation of human beta 2-microglobulin transactivation in hematopoietic cells.

Blood

Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.

Published: April 2003

beta(2)-Microglobulin (beta(2)m) is a chaperone of major histocompatibility complex (MHC) class I (-like) molecules that play a central role in antigen presentation, immunoglobulin transport, and iron metabolism. It is therefore of importance that beta(2)m is adequately expressed in cells that perform these functions, such as hematopoietic cells. In this study, we investigated the transcriptional regulation of beta(2)m in lymphoid and myeloid cell lines through a promoter containing a putative E box, Ets/interferon-stimulated response element (ISRE), and kappa B site. Here we show that upstream stimulatory factor 1 (USF1) and USF2 bind to the E box and regulate beta(2)m transactivation. The nuclear factor kappa B (NF-kappa B) subunits p50 and p65 bind to the kappa B box and p65 transactivates beta(2)m. Interferon regulatory factor 1 (IRF1), IRF2, IRF4, and IRF8, but not PU.1, bind to the Ets/ISRE, and IRF1 and IRF3 are strong transactivators of beta(2)m. Together, all 3 boxes are important for the constitutive and cytokine-induced levels of beta(2)m expression in lymphoid and myeloid cell types. As such, beta(2)m transactivation is under the control of important transcriptional pathways, which are activated during injury, infection, and inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2002-09-2924DOI Listing

Publication Analysis

Top Keywords

hematopoietic cells
8
beta2m
8
lymphoid myeloid
8
myeloid cell
8
beta2m transactivation
8
regulation human
4
human beta
4
beta 2-microglobulin
4
2-microglobulin transactivation
4
transactivation hematopoietic
4

Similar Publications

This study aimed to examine the acute effects of concurrent muscle strength and sport-specific endurance exercise order on immunological stress responses, metabolic response, muscular-fitness, and rating-of-perceived-exertion (RPE) in highly trained youth female judo athletes. Thirteen female participants randomly performed two concurrent training (CT) sessions; strength-endurance and endurance-strength. Immune response, metabolic response, muscular fitness (i.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) maintain production of all functional blood cells and are located within the bone marrow. In pathological conditions, such as obesity or leukemia, changes in these cells contribute to disease pathophysiology. In this study, we examined the impact of metabolic modulation of stem and progenitor cells within the bone marrow during diet-induced obesity (DIO) and leukemia relapse.

View Article and Find Full Text PDF

[A CRISPR/Cas approach to β-haemoglobinopathies].

Med Sci (Paris)

January 2025

Institut Imagine, Inserm UMR1163, université Paris Cité, Paris, France.

Beta-haemoglobinopathies are severe genetic anemias caused by mutations that affect adult haemoglobin production. Many therapeutic approaches aim to reactivate the expression of the fetal hemoglobin genes. To this end, the CRISPR/Cas9 system has recently been used to genetically modify patients' hematopoietic stem/progenitor cells ex vivo and reactivate fetal hemoglobin expression in their erythroid progeny.

View Article and Find Full Text PDF

Fibroblasts, non-hematopoietic cells of mesenchymal origin, are tissue architects which regulate the topography of tissues, dictate tissue resident cell types, and drive fibrotic disease. Fibroblasts regulate the composition of the extracellular matrix (ECM), a 3-dimensional network of macromolecules that comprise the acellular milieu of tissues. Fibroblasts can directly and indirectly regulate immune responses by secreting ECM and ECM-bound molecules to shape tissue structure and influence organ function.

View Article and Find Full Text PDF

Unveiling a pathogenic gene variant in a Mexican family with Fanconi anemia through next‑generation sequencing.

Exp Ther Med

March 2025

Human Genetics Institute 'Dr Enrique Corona Rivera', Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco 44340, México.

Fanconi anemia (FA) is the most common hereditary bone marrow failure syndrome, with an incidence of 1 in 5,000,000. This disease is caused by an alteration in one of the 23 genes associated with the FA/BRCA DNA repair pathway, which is responsible for repairing interstrand bridges generated during homologous recombination. FA has been associated with a predisposition to other types of neoplasm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!