We synthesized three novel lipophilic derivatives of phenylalanyl-glycine (Phe-Gly), C4-Phe-Gly, C6-Phe-Gly and C8-Phe-Gly by chemical modification with butyric acid (C4), caproic acid (C6) and octanoic acid (C8). The effect of the acylation on the stability, permeability and accumulation of Phe-Gly in the skin was investigated by in vitro studies. The stability of Phe-Gly in skin homogenates was low, but was significantly improved by the acylation. In the transport studies, a Franz-type diffusion cell was used for the permeability experiments with Phe-Gly and its acyl derivatives. The permeability of acyl-Phe-Gly derivatives across the intact skin was higher than that of native Phe-Gly. Of all the acyl-Phe-Gly derivatives, C6-Phe-Gly was the most permeable compounds across the intact skin. On the other hand, the permeability of acyl-Phe-Gly derivatives across stripped skin was less than that of native Phe-Gly in the initial time period of transport studies, but their permeability was higher than that of native Phe-Gly at the end of the transport studies. When the skin was pretreated with ethanol, which could inactivate the peptidases responsible for the degradation of Phe-Gly, the permeability of native Phe-Gly was higher than that of acyl derivatives. These findings indicated the involvement of peptidases on the permeability of Phe-Gly across the skin. The relationship between the lipophilic indexes of Phe-Gly derivatives and the permeability coefficients indicated that there is an optimal carbon number of fatty acid for improving the transdermal permeability of Phe-Gly by the acylation. A good correlation was found between the accumulation of these acyl-Phe-Gly derivatives in the intact skin and their lipophilicity. These results suggest that the stability and permeability of Phe-Gly were improved by chemical modification with fatty acids and this enhanced permeability of Phe-Gly by the acylation may be attributed to the protection of Phe-Gly from the enzymatic degradation in the skin and the increase in the partition of Phe-Gly to the stratum corneum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-5173(02)00536-7 | DOI Listing |
Unlabelled: Lenacapavir (LEN) is the first in class viral capsid protein (CA) targeting antiretroviral for treating multi-drug-resistant HIV-1 infection. Clinical trials and cell culture experiments have identified resistance associated mutations (RAMs) in the vicinity of the hydrophobic CA pocket targeted by LEN. The M66I substitution conferred by far the highest level of resistance to the inhibitor compared to other RAMs.
View Article and Find Full Text PDFRSC Adv
October 2024
Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist-Dhule Maharashtra 425 405 India
ACS Pharmacol Transl Sci
October 2024
Dept. of Chemistry "G. Ciamician", University of Bologna, Campus Navile - Ue4, via Gobetti 83, Bologna 40129, Italy.
Recently, the fungus secondary metabolite cyclotetrapetide c[Trp-Phe-D-Pro-Phe] (CJ-15,208) and its derivatives deserved some attention for their unusual structure and distinctive in vitro and in vivo activity. These tryptophan-containing noncationic opioid peptides can be truly regarded as versatile picklocks capable of activating all opioid receptors. Intriguingly, minimal modification of the potent κ-opioid receptor (KOR) agonist c[D-Trp-Phe-Gly-β-Ala] () yielded c[D-Trp-Phe-β-Ala-β-Ala] (), the first KOR-specific negative allosteric modulator (NAM) reported to-date.
View Article and Find Full Text PDFJ Microbiol Biotechnol
October 2024
Department of Clinical Laboratory, the Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China.
J Control Release
November 2024
University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy. Electronic address:
In this work, we conceived and developed antibody-drug conjugates (ADCs) that could efficiently release the drug after enzymatic cleavage of the linker moiety by tumoral proteases. The antibody-drug linkers we used are the result of a rational optimization of a previously reported PEGylated linker, PUREBRIGHT® MA-P12-PS, which showed excellent drug loading capacities but lacked an inbuilt drug discharge mechanism, thus limiting the potency of the resulting ADCs. To address this limitation, we chose to incorporate a protease-sensitive trigger into the linker to favor the release of a "PEGless" drug inside the tumor cells and, therefore, obtain potent ADCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!