The signaling pathway for DNA damaging drug-triggered apoptosis was examined in a chemosensitive human neuroblastoma cell line, SH-SY5Y. Doxorubicin and etoposide induce rapid and extensive apoptosis in SH-SY5Y cells. After the drug treatment, p53 protein levels increase in the nucleus, leading to the induction of its transcription targets p21(Waf1/Cip1) and MDM2. Inactivation of p53, either by the human papillomavirus type 16 E6 protein or by a dominant-negative mutant p53 (R175H), completely protects SH-SY5Y cells from drug-triggered apoptosis. Cytochrome c and caspase-9 function downstream of p53 in mediating the drug-triggered apoptosis in SH-SY5Y cells. In drug-treated cells, cytochrome c is released, and caspase-9 becomes activated. Inactivation of p53 blocks cytochrome c release and caspase-9 activation. Furthermore, drug-induced cell death can be prevented by expression of a dominant-negative mutant of caspase-9. These findings define a molecular pathway for mediating DNA damaging drug-induced apoptosis in the human neuroblastoma SH-SY5Y cells and suggest that inactivation of essential components of this apoptotic pathway may confer drug resistance on neuroblastoma cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sh-sy5y cells
16
dna damaging
12
drug-triggered apoptosis
12
damaging drug-induced
8
drug-induced apoptosis
8
neuroblastoma cells
8
human neuroblastoma
8
apoptosis sh-sy5y
8
inactivation p53
8
dominant-negative mutant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!