KaiC from Synechococcus elongatus PCC 7942 (KaiC) is an essential circadian clock protein in cyanobacteria. Previous sequence analyses suggested its inclusion in the RecADnaB superfamily. A characteristic of the proteins of this superfamily is that they form homohexameric complexes that bind DNA. We show here that KaiC also forms ring complexes with a central pore that can be visualized by electron microscopy. A combination of analytical ultracentrifugation and chromatographic analyses demonstrates that these complexes are hexameric. The association of KaiC molecules into hexamers depends on the presence of ATP. The KaiC sequence does not include the obvious DNA-binding motifs found in RecA or DnaB. Nevertheless, KaiC binds forked DNA substrates. These data support the inclusion of KaiC into the RecADnaB superfamily and have important implications for enzymatic activity of KaiC in the circadian clock mechanism that regulates global changes in gene expression patterns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC139293 | PMC |
http://dx.doi.org/10.1073/pnas.262578499 | DOI Listing |
Neurobiol Pain
December 2024
Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA.
Joint pain is the primary symptom of osteoarthritis (OA) and the main motivator for patients to seek medical care. OA-related pain significantly restricts joint function and diminishes quality of life. Despite the availability of various pain-relieving medications for OA, current treatment strategies often fall short in delivering adequate pain relief.
View Article and Find Full Text PDFClocks Sleep
January 2025
Circadian Physics Group, School of Physics, University of Sydney, Sydney, NSW 2006, Australia.
Fixed sleep schedules with an 8 h time in bed (TIB) are used to ensure participants are well-rested before laboratory studies. However, such schedules may lead to cumulative excess wakefulness in young individuals. Effects on older individuals are unknown.
View Article and Find Full Text PDFIET Syst Biol
January 2025
Center for Computational Biology, Department of Computational Biology, IIIT-Delhi, New Delhi, India.
One of the challenges that beset modelling complex biological networks is to relate networks to function to dynamics. A further challenge is deciphering the cellular function and dynamics that can change drastically when the network edge is tinkered with by adding or removing it. To illustrate this, the authors took a well-studied three-variable Goodwin oscillatory motif with only a negative feedback loop.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
Gut Microbes
December 2025
Department of Microbiome Research and Applied Bioinformatics, Institute for Nutritional Sciences, University of Hohenheim, Stuttgart, Germany.
The etiology of inflammatory bowel disease (IBD) remains unclear, treatment options unsatisfactory and disease development difficult to predict for individual patients. Dysbiosis of the gastrointestinal microbiota and disruption of the biological clock have been implicated and studied as diagnostic and therapeutic targets. Here, we examine the relationship of IBD to biological clock and gut microbiota by using the IL-10 deficient () mouse model for microbiota-dependent spontaneous colitis in combination with altered (4 h/4 h) light/dark cycles to disrupt and time-restricted feeding (TRF) to restore circadian rhythmicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!