The antitumor activity of histone deacetylase (HDAC) inhibitors has been linked to gene expression induced by acetylation of histone and nonhistone proteins; but the molecular basis for their antitumor selectivity remains largely unknown. With development of a genomically integrated, ErbB2 promoter-reporting breast cancer cell screen, ErbB2 promoter inhibiting activity was observed by the HDAC inhibitors trichostatin A (TSA) and sodium butyrate. Paradoxically, these agents stimulated the episomal form of this ErbB2 promoter-reporter introduced by transient transfection. Transcriptional run-off assays in ErbB2 amplified and overexpressing breast cancer cells confirmed that within 5 h, TSA exposure profoundly inhibits ErbB2 transcript synthesis from the amplified oncogene yet preserves transcription from single copy genes such as the epithelial-specific Ets family member, ESX. Northern analyses of ErbB2-overexpressing breast cancer lines (SKBR3, BT-474, and MDA-453) showed that within 24 h of submicromolar treatment by TSA, ESX transcript levels increase while ErbB2 transcript levels rapidly decline, with no TSA effect apparent on the open chromatin configuration of either gene as monitored by DNase I hypersensitivity. Actinomycin D studies confirmed that in addition to inhibiting ErbB2 transcript synthesis, TSA selectively destabilizes mature ErbB2 transcripts enhancing their decay. Whereas TSA markedly reduced ErbB2 protein levels in these overexpressing cell lines, TSA treatment of MCF/HER2-18 cells engineered to overexpress the ErbB2 receptor under control of a heterologous promoter increased their expression of ErbB2 protein. These findings suggest that further studies are warranted to determine whether ErbB2-positive human cancers represent unusually sensitive clinical targets for HDAC inhibitor therapy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

erbb2
13
breast cancer
12
erbb2 transcript
12
histone deacetylase
8
genomically integrated
8
integrated erbb2
8
erbb2 promoter-reporting
8
cell screen
8
hdac inhibitors
8
transcript synthesis
8

Similar Publications

Circulating tumor cells (CTCs) drive metastasis, the leading cause of death in individuals with breast cancer. Due to their low abundance in the circulation, robust CTC expansion protocols are urgently needed to effectively study disease progression and therapy responses. Here we present the establishment of long-term CTC-derived organoids from female individuals with metastatic breast cancer.

View Article and Find Full Text PDF

The detection of Estrogen Receptor (ER), Progesterone Receptor (PR), and Human epidermal growth factor receptor 2 (HER-2) is important for the stratification of breast cancer and the selection of therapeutic modalities. This study aimed to determine the quantitative expression of ER, PR and HER-2 using Immunohistochemistry and their correlation with quantitative baseline Ct values measured using Quantitative Polymerase Chain Reaction (PCR). This study also assessed the use of fresh breast tissue biopsies preserved in RNAlater solution in the quantitative detection of these receptors using PCR technique.

View Article and Find Full Text PDF

Although various sensors specifically developed for target analytes are available, affordable biosensing solutions with broad applicability are limited. In this study, a cost-effective biosensor for detecting human epidermal growth factor receptor 2 (HER2) was developed using custom-made gold leaf electrodes (GLEs). A novel strategy for antibody immobilization on a gold surface, for the first time mediated by protein L and HER2-specific antibody trastuzumab, was examined using commercial screen-printed gold electrodes and GLEs.

View Article and Find Full Text PDF

This study (NCT04728035) aimed to explore the safety and efficacy of liposomal irinotecan (HE072) in patients with metastatic triple-negative breast cancer (mTNBC). This study consisted of two parts. In part 1, the 3 + 3 design was used to investigate three dose levels of HE072 (50, 70 and 90 mg/m).

View Article and Find Full Text PDF

Purpose: In-vivo proton magnetic resonance spectroscopy (MRS) is a non-invasive method of analyzing choline metabolism that has been used to predict breast cancer prognosis. A strong choline peak may be a surrogate for aggressive tumor biology but its clinical relevance is unclear. The present study assessed whether total choline (tCho), as measured by proton MRS, can predict late recurrence in patients with hormone receptor (HR)-positive, HER2-negative early breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!