Experiments on animals and clinical studies in athletes have shown a negative impact of extreme exercises on the physicochemical characteristics of biomembranes. The resultant decrease in the activity of different isoforms of the multienzymatic system of hepatic cytochrome P450 may underlie, firstly, the formation of a vicious circle of increases in the microviscosity of biomembranes and membrane-dependent processes and, secondly, the lowered resistance of athletes to chemical environmental factors, which should be borne in mind during the professional activity of high-class athletes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

[the body's
4
body's responses
4
responses extreme
4
extreme exercise
4
exercise biochemical
4
biochemical aspects]
4
aspects] experiments
4
experiments animals
4
animals clinical
4
clinical studies
4

Similar Publications

Noninvasive in vivo imaging of macrophages: understanding tumor microenvironments and delivery of therapeutics.

Biomark Res

January 2025

BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.

Macrophages are pivotal in the body's defense and response to inflammation. They are present in significant numbers and are widely implicated in various diseases, including cancer. While molecular and histological techniques have advanced our understanding of macrophage biology, their precise function within the cancerous microenvironments remains underexplored.

View Article and Find Full Text PDF

Circadian aspects in nonpharmacologic and pharmacologic treatment of insomnia.

Handb Clin Neurol

January 2025

Department of Surgical Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy; Department of Neuroscience, Psychology Unit, University of Pisa Azienda Ospedaliera Universitaria Pisana (AUOP), Pisa, Italy.

Insomnia disorder is a frequent sleep disorder leading to significant health and economic consequences. It has been proposed that individuals with insomnia may experience compromised deactivation systems of arousal, leading to a chronic state of hyperactivation of arousal known as hyperarousal, along with instability in the flip-flop system. Such disruptions may have a primarily impact on the sleep homeostatic drive process.

View Article and Find Full Text PDF

The associations between irregular breakfast and late-night snacking with metabolic dysfunction-associated steatotic liver disease.

Clin Nutr

January 2025

Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China; Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People's Hospital, Beijing, China. Electronic address:

Background: The newly coined term Metabolic dysfunction-associated steatotic liver disease (MASLD) emphasizes the critical role of metabolic risk factors in the pathogenesis of fatty liver disease. The consumption of irregular breakfasts or late-night snacks has been identified as a factor closely associated with disruptions in the body's energy homeostasis and metabolic balance. However, the relationship between these behaviors and MASLD has not been previously examined.

View Article and Find Full Text PDF

Functional properties of aged hypothalamic cells.

Vitam Horm

January 2025

Department Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia. Electronic address:

The hypothalamus, in addition to controlling the main body's vital functions, is also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular pathways, including Ca signaling and neuronal excitability in the brain. Intrinsic electrophysiological properties of individual neurons and synaptic transmission between cells is disrupted in the central nervous system of old animals.

View Article and Find Full Text PDF

In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!