Cyclic ADP-ribose (cADPR) is a potent and universal intracellular calcium mobilizer, recently shown to behave as a new hemopoietic cytokine stimulating the in vitro proliferation of both committed and uncommitted human hemopoietic progenitors (HP). Here, we investigated the effects of cADPR on engraftment of hemopoietic stem cells (HSC) into irradiated NOD/SCID mice. Two different protocols were used: i) a 24 h in vitro priming of cord blood-derived mononuclear cells (MNC) with micromolar cADPR, followed by their infusion into irradiated mice (both primary and secondary transplants); and ii) co-infusion of MNC with CD38-transfected, cADPR-generating, irradiated murine 3T3 fibroblasts. We demonstrated a dual effect of cADPR on human HP in vivo: i) enhanced proliferation of committed progenitors, responsible for improvement of short-term engraftment; ii) expansion of HSC, with increased long-term human engraftment into secondary recipients and a significantly higher expansion factor of CD34+ progenitors in mice co-infused with MNC and CD38+ 3T3 fibroblasts. These results hold promise for the possible therapeutic use of cADPR, and of cADPR-producing stroma, to achieve long-term expansion of human HSC, that is, those HP capable of self-renewal and responsible for repopulation of the bone marrow.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.02-0520fjeDOI Listing

Publication Analysis

Top Keywords

cyclic adp-ribose
8
human hemopoietic
8
hemopoietic stem
8
nod/scid mice
8
proliferation committed
8
3t3 fibroblasts
8
human
5
cadpr
5
adp-ribose generation
4
generation cd38
4

Similar Publications

Objective: Metabolic reprogramming plays a critical role in modulating the innate and adaptive immune response, but its role in cutaneous autoimmune diseases, such as cutaneous lupus erythematosus (CLE), is less well studied. An improved understanding of the metabolic pathways dysregulated in CLE may lead to novel treatment options, biomarkers and insights into disease pathogenesis. The objective was to compare metabolomic profiles in the skin and sera of CLE and control patients using liquid chromatography-mass spectrometry (LC-MS).

View Article and Find Full Text PDF

Gap junction intercellular communications regulates activation of SARM1 and protects against axonal degeneration.

Cell Death Dis

January 2025

State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.

Sterile alpha and Toll/interleukin-1 receptor motif containing 1 (SARM1), a nicotinamide adenine dinucleotide (NAD)-utilizing enzyme, mediates axon degeneration (AxD) in various neurodegenerative diseases. It is activated by nicotinamide mononucleotide (NMN) to produce a calcium messenger, cyclic ADP-ribose (cADPR). This activity is blocked by elevated NAD level.

View Article and Find Full Text PDF

Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment.

View Article and Find Full Text PDF

Single phage proteins sequester signals from TIR and cGAS-like enzymes.

Nature

November 2024

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.

Prokaryotic anti-phage immune systems use TIR and cGAS-like enzymes to produce 1''-3'-glycocyclic ADP-ribose (1''-3'-gcADPR) and cyclic dinucleotide (CDN) and cyclic trinucleotide (CTN) signalling molecules, respectively, which limit phage replication. However, how phages neutralize these distinct and common systems is largely unclear. Here we show that the Thoeris anti-defence proteins Tad1 and Tad2 both achieve anti-cyclic-oligonucleotide-based anti-phage signalling system (anti-CBASS) activity by simultaneously sequestering CBASS cyclic oligonucleotides.

View Article and Find Full Text PDF

Emergence of cyclic hypoxia and the impact of PARP inhibitors on tumor progression.

NPJ Syst Biol Appl

October 2024

Departamento de Matemática Aplicada and Research Unit "Modeling Nature" (MNat), Universidad de Granada, Avenida de la Fuente Nueva S/N, Granada, 18071, Spain.

Article Synopsis
  • Tumor hypoxia involves fluctuating oxygen levels that occur over short (seconds to minutes) and long (hours to days) periods, with the longer cycles not being fully understood.
  • The study introduces a mathematical model explaining these long cycles through mechanisms like vascular changes, tumor growth influenced by oxygen, and the production of toxic cytokines, while highlighting the importance of endothelial cell receptor adaptation.
  • Additionally, the research suggests that using PARP inhibitors may help manage hypoxia by targeting tumor cell proliferation, pointing to new therapeutic strategies involving PARP proteins.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!