Diabetes in subjects with hepatocyte nuclear factor (HNF)-1alpha gene mutations (maturity-onset diabetes of the young [MODY]-3) is characterized by impaired insulin secretion. Surprisingly, MODY3 patients exhibit hypersensitivity to the hypoglycemic actions of sulfonylurea therapy. To study the pharmacogenetic mechanism(s), we have investigated glibenclamide-induced insulin secretion, glibenclamide clearance from the blood, and glibenclamide metabolism in wild-type and Hnf-1alpha-deficient mice. We show that despite a profound defect in glucose-stimulated insulin secretion, diabetic Hnf-1alpha(-/-) mice have a robust glibenclamide-induced insulin secretory response. We demonstrate that the half-life (t(1/2)) of glibenclamide in the blood is increased in Hnf-1alpha(-/-) mice compared with wild-type littermates (3.9 +/- 1.3 vs. 1.5 +/- 1.8 min, P

Download full-text PDF

Source
http://dx.doi.org/10.2337/diabetes.51.2007.s343DOI Listing

Publication Analysis

Top Keywords

insulin secretion
12
hepatocyte nuclear
8
sulfonylurea therapy
8
maturity-onset diabetes
8
diabetes young
8
glibenclamide-induced insulin
8
hnf-1alpha-/- mice
8
decreased glibenclamide
4
glibenclamide uptake
4
uptake hepatocytes
4

Similar Publications

Cows with high body condition scores experience more severe negative energy balance (NEB) and undergo mobilization of more body fat during the peripartum period, leading to more production of nonesterified fatty acids (NEFA) and -hydroxybutyric acid (BHBA). Postpartum insulin secretion is lower, and insulin resistance is stronger in obese cows. Exogenous insulin supplementation has been hypothesized as a key approach for regulating NEFA in these cows.

View Article and Find Full Text PDF

Compared to primary pancreatic islets, insulinoma cell-derived 3D pseudoislets offer a more accessible, consistent, renewable, and widely applicable model system for optimization and mechanistic studies in type 1 diabetes (T1D). Here, we report a simple and efficient method for generating 3D pseudoislets from MIN6 and NIT-1 murine insulinoma cells. These pseudoislets are homogeneous in size and morphology (~150 µm), exhibit functional glucose-stimulated insulin secretion (GSIS) up to 18 days (NIT-1) enabling long-term studies, are produced in high yield [>35,000 Islet Equivalence from 30 ml culture], and are suitable for both and studies, including for encapsulation studies.

View Article and Find Full Text PDF

Construction of a rodent neural network-skeletal muscle assembloid that simulate the postnatal development of spinal cord motor neuronal network.

Sci Rep

January 2025

Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.

Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits.

View Article and Find Full Text PDF

Background: Reduced insulin secretion is linked to diabetes and cardiovascular disease (CVD), but its role in non-diabetic CVD patients is unclear. The homeostasis model assessment of β-cell function (HOMA-β) measures pancreatic β-cell function. This study investigated the association between HOMA-β and adverse cardiovascular events in non-diabetic CVD patients.

View Article and Find Full Text PDF

The hypoglycemic effects of nateglinide (NTG) were examined in rats with acute peripheral inflammation (API) induced by carrageenan treatment, and the mechanisms accounting for altered hypoglycemic effects were investigated. NTG was administered through the femoral vein in control and API rats, and its plasma concentration profile was characterized. The time courses of the changes in plasma glucose and insulin levels were also examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!