Regulation of cardiac inwardly rectifying potassium channels by membrane lipid metabolism.

Prog Biophys Mol Biol

Department of Physiology and Biophysics, Graduate School of Medicine, Kyoto University, Japan.

Published: January 2003

Types and distributions of inwardly rectifying potassium (Kir) channels are one of the major determinants of the electrophysiological properties of cardiac myocytes. Kir2.1 (classical inward rectifier K(+) channel), Kir6.2/SUR2A (ATP-sensitive K(+) channel) and Kir3.1/3.4 (muscarinic K(+) channels) in cardiac myocytes are commonly upregulated by a membrane lipid, phosphatidylinositol 4,5-bisphosphates (PIP(2)). PIP(2) interaction sites appear to be conserved by positively charged amino acid residues and the putative alpha-helix in the C-terminals of Kir channels. PIP(2) level in the plasma membrane is regulated by the agonist stimulation. Kir channels in the cardiac myocytes seem to be actively regulated by means of the change in PIP(2) level rather than by downstream signal transduction pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0079-6107(02)00048-2DOI Listing

Publication Analysis

Top Keywords

kir channels
12
cardiac myocytes
12
inwardly rectifying
8
rectifying potassium
8
membrane lipid
8
channels cardiac
8
pip2 level
8
channels
5
regulation cardiac
4
cardiac inwardly
4

Similar Publications

Activation of the brain-penetrant beta3-adrenergic receptor (Adrb3) is implicated in the treatment of depressive disorders. Enhancing GABAergic inputs from interneurons onto pyramidal cells of prefrontal cortex (PFC) represents a strategy for antidepressant therapies. Here, we probed the effects of the activation of Adrb3 on GABAergic transmission onto pyramidal neurons in the PFC using in vitro electrophysiology.

View Article and Find Full Text PDF

Epilepsy is characterized by neuronal discharges that occur as a result of disruption of the excitatory and inhibitory balance of the brain due to functional and structural changes. It has been shown in the literature that this neurological disorder may be related to the expression of ion channels. Any defect in the function or expression mechanism of these channels can lead to various neuronal disorders such as epilepsy.

View Article and Find Full Text PDF

Inwardly rectifying potassium (Kir) channels regulate essential physiological processes in insects and have been identified as potential targets for developing new insecticides. Flonicamid has been reported to inhibit Kir channels, disrupting the functions of salivary glands and renal tubules. However, the precise molecular target of flonicamid remains debated.

View Article and Find Full Text PDF

Direct effects of antipsychotics on potassium channels.

Biochem Biophys Res Commun

January 2025

Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea. Electronic address:

Schizophrenia (SCZ) and bipolar disorder (BD) and are severe psychiatric conditions that contribute to disability and increased healthcare costs globally. Although first-, second-, and third-generation antipsychotics are available for treating BD and SCZ, most have various side effects unrelated to their unique functions. Many antipsychotics affect K channels (Kv, K, Kir, K, and other channels), which change the functions of various organs.

View Article and Find Full Text PDF

Roles of calcium in ameloblasts during tooth development: A scoping review.

J Taibah Univ Med Sci

February 2025

Department of Prosthodontics/Dental Material, Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, India.

Objectives: Calcium ions (Ca) play crucial role in tooth development, particularly in maintaining enamel density during amelogenesis. Ameloblasts require specific proteins such as amelogenin, ameloblastin, enamelin, kallikrein, and collagen for enamel growth. Recent research has highlighted the importance of calcium and fluoride ions, as well as the TRPM7, STIM, and SOCE pathways, in regulating various stages of enamel formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!