Sorption and permeability of gasoline hydrocarbons in organobentonite porous media.

J Hazard Mater

Program of Interdisciplinary Research in Contaminant Hydrogeology, Department of Civil Engineering, University of Virginia, P.O. Box 400742, Charlottesville, VA 22904-4742, USA.

Published: January 2003

We investigate the use of organobentonites as liners for underground gasoline storage tanks to reduce the risk of subsurface contamination. A series of permeability measurements were conducted on two types of organobentonites: benzyltriethylammonium-bentonite (BTEA-bentonite) and hexadecyltrimethylammonium-bentonite (HDTMA-bentonite). Both water and commercial unleaded gasoline were used as the permeant liquids. Results of these measurements indicate that the intrinsic permeability of the organobentonite decreases by one to two orders of magnitude when the permeant liquid is changed from water to gasoline. Results of batch sorption measurements reveal that benzene sorption to both organobentonites from water is greater than benzene sorption to conventional bentonite. The magnitude of benzene sorption is related to the loading of the organic quaternary ammonium cation on the clay. As the HDTMA cation loading increases from 25% of cation exchange capacity (CEC) to 120% of CEC, benzene sorption increases. However, as the BTEA cation loading increases from 40 to 120% of CEC, benzene sorption decreases. Collectively, these results suggest that organobentonites can be used effectively to reduce hydrocarbon migration rates beneath leaking underground gasoline storage tanks, and that the optimal organic cation loading with respect to pollutant sorption may be less than 50% of cation exchange capacity for some organobentonite-solute combinations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0304-3894(02)00199-1DOI Listing

Publication Analysis

Top Keywords

benzene sorption
20
cation loading
12
sorption
8
underground gasoline
8
gasoline storage
8
storage tanks
8
loading increases
8
cation exchange
8
exchange capacity
8
120% cec
8

Similar Publications

Effects of copper and lead on the sorption and desorption behaviors of benzene onto humic acids and black carbons.

Water Sci Technol

November 2024

Six Geological Team of Hubei Geological Bureau, Xiaogan 432000, China; Hubei Key Laboratory of Resources and Eco-Environment Geology, Xiaogan 432000, China.

Due to rapid urbanization and industrialization, combined pollution caused by BTEX (benzene, toluene, ethylbenzene, and xylene) and heavy metals has become ubiquitous in soils, which would pose serious health risks to humans. However, the effects of heavy metals on the sorption and desorption behaviors of BTEX have not been fully elucidated. In this study, the effects of Cu and Pb ions on the sorption and desorption of benzene onto humic acids and black carbons were investigated.

View Article and Find Full Text PDF

In this study, we present a novel combination of carbon nanotubes (CNT), widely used as a sorbent material in solid-phase extraction-based methodologies, with polybenzimidazole (PBI), recently introduced as a universal binder for physical immobilization of sorbent particles. This combination was used to prepare CNT-PBI coated solid-phase microextraction (SPME) devices (fibers, arrows, and blades) suitable for both thermal and solvent desorption. The resulting CNT-PBI SPME devices presented excellent mechanical resistance and high thermal stability, capable of enduring multiple thermal desorption cycles without compromising extraction efficiency.

View Article and Find Full Text PDF

Rapid extraction of trace benzene by a crown-ether-based metal-organic framework.

Natl Sci Rev

December 2024

Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.

Due to almost identical boiling points of benzene and cyclohexane, the extraction of trace benzene from cyclohexane is currently performed the energy-intensive extractive distillation method. Their adsorptive separation by porous materials is hampered by their similar dimensions. Metal-organic frameworks (MOFs) with versatile pore environments are capable of molecular discrimination, but the separation of trace substrates in liquid-phase remains extremely challenging.

View Article and Find Full Text PDF

Vertically Expanded Crystalline Porous Covalent Organic Frameworks.

J Am Chem Soc

November 2024

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City 350207, China.

Covalent organic frameworks (COFs) can be developed for molecular confinement and separation. However, their proximate π stacks limit the interlayer distance to be only 3-6 Å, which is too small for guests to enter. As a result, COFs block access to the - space and limit guest entry/exit strictly to only the pores along the direction.

View Article and Find Full Text PDF

Fluorinated Squareimines for Molecular Sieving of Aromatic over Aliphatic Compounds.

Angew Chem Int Ed Engl

December 2024

Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.

The development of more energy-efficient separation technologies is essential. Especially the separation of cyclic aliphatic hydrocarbons from their aromatic counterparts remains a significant challenge due to azeotrope formation and similar physical properties, often requiring energy-intensive processes. Herein, we introduce a novel class of electron-deficient macrocycles with a unique rectangular structure to optimise interactions within the pore, enabling the highly selective molecular sieving of aromatic compounds from mixtures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!