Studies on water transport through the sweet cherry fruit surface. 7. Fe3+ and Al3+ reduce conductance for water uptake.

J Agric Food Chem

Institute for Agronomy and Crop Science, Department of Horticulture, Martin-Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.

Published: December 2002

The effects of the chloride salts LiCl, CaCl(2), MgCl(2), AlCl(3), EuCl(3), and FeCl(3) and the iron salts FeCl(2), FeCl(3), Fe(NO(3))(3), FeSO(4), and Fe(2)(SO(4))(3) on water conductance of exocarp segments (ES) and rates of water uptake into detached sweet cherry fruit (Prunus avium L. cv. Adriana, Early Rivers, Namare, Namosa, and Sam) were studied. ES were excised from the cheek of mature fruit and mounted in stainless steel diffusion cell; water penetration was monitored gravimetrically from donor solutions containing the above mineral salts into a PEG 6000 (osmolality = 1.14 osM, pH 4.8, 25 degrees C) receiver solution. Conductance of ES was calculated from the amount of water taken up per unit of surface area and time by dividing by the gradient in water activity across ES. LiCl, CaCl(2), MgCl(2), FeCl(2), and FeSO(4) had no significant effect on conductance, but AlCl(3), FeCl(3), Fe(NO(3))(3), and Fe(2)(SO(4))(3) significantly reduced conductance compared to water only as a donor. Also, EuCl(3) lowered conductance; however, this effect was not always significant. Effects of salts on water conductance of ES and rates of water uptake into detached fruit were closely related (R 2 = 0.97***). Upon application of an FeCl(3)-containing donor conductance decreased instantaneously. FeCl(3) concentrations of <6.6 x 10(-)(4) M had no effect on conductance, but concentrations at or above this threshold decreased conductance. FeCl(3) lowered water conductance at a receiver pH of 4.8, but not at pH < or =2.6. The effect of FeCl(3) on conductance was largest in cv. Namare and smallest in cv. Adriana. There was no significant effect of FeCl(3) on conductance for transpiration. Formation of aluminum and iron oxides and hydroxides in the exocarp as a result of a pH gradient between donor and receiver solution is discussed as the potential mechanism for Fe(3+) and Al(3+) reducing conductance for water uptake.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf020441xDOI Listing

Publication Analysis

Top Keywords

water uptake
12
water
9
sweet cherry
8
cherry fruit
8
conductance
8
licl cacl2
8
cacl2 mgcl2
8
fecl3 feno33
8
water conductance
8
rates water
8

Similar Publications

Phytotoxic air pollutants such as atmospheric nitrogen dioxide (NO) are among the major stresses affecting tree photosynthesis in urban areas. We clarified the relationship between NO concentrations and photosynthetic function for three major urban trees, Prunus × yedoensis, Rhododendron pulchrum, and Ginkgo biloba, planted in Kyoto and surrounding cities, combining our published data and new data collected from 2020 to 2023. High NO increased long-term water use efficiency for all species.

View Article and Find Full Text PDF

Dendrimer-Mediated Generation of a Metal-Phenolic Network for Antibody Delivery to Elicit Improved Tumor Chemo/Chemodynamic/Immune Therapy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.

To simplify the composition and improve the efficacy of metal-phenolic network (MPN)-based nanomedicine, herein, we designed an MPN platform to deliver programmed death ligand-1 (PD-L1) antibody (anti-PD-L1) for combined tumor chemo/chemodynamic/immune therapy. Here, generation 5 poly(amidoamine) dendrimers conjugated with gossypol (Gos) through boronic ester bonds were used as a synthetic polyphenol to coordinate Mn, and then complexed with anti-PD-L1 to obtain the nanocomplexes (for short, DPGMA). The prepared DPGMA exhibited good water dispersibility with a hydrodynamic size of 166.

View Article and Find Full Text PDF

Background: The Diffusive Gradients in Thin Films (DGT) technique has become the most widely used passive sampling method for inorganic compounds. This widespread adoption can be partly attributed to the development of new binding phases that facilitate the sampling of numerous analytes. In contrast, to date, the DGT sampler for inorganic compounds has not seen any significant design improvements.

View Article and Find Full Text PDF

Microbial assisted alleviation of nickel toxicity in plants: A review.

Ecotoxicol Environ Saf

January 2025

Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden. Electronic address:

Nickel (Ni) is required in trace amounts (less than 500 µg kg) in plants to regulate metabolic processes, the immune system, and to act as an enzymatic catalytic cofactor. Conversely, when nickel is present in high concentration, it is considered as a toxic substance. Excessive human nickel exposure occurs through ingestion, inhalation, and skin contact, ultimately leading to respiratory, cardiovascular, and chronic kidney diseases.

View Article and Find Full Text PDF

Synergistic effect of naringenin and mild heat for inactivation of E. coli O157:H7, S. Typhimurium, L. monocytogenes, and S. aureus in peptone water and cold brew coffee.

Int J Food Microbiol

January 2025

Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

This study aimed to investigate the bactericidal effect of naringenin (NG), a plant-derived flavonoid, and its synergistic effect with mild heat (MH) treatment at 50 °C in peptone water (PW) and ready-to-drink cold brew coffee (RDC). Among various NG concentrations (1-20 mM), 10 mM NG resulted in the greatest inactivation for Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus. In RDC, NG + MH treatment resulted in a 5-8-log reduction in all pathogens after 10 min, except for S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!