Calculation of the average solid angle subtended by a detector to source in a parallel plane by a Monte Carlo method.

Radiat Prot Dosimetry

West Sussex County Council, County Hall, Chichester, PO19 IRF, UK.

Published: May 2003

A short computer program is described for a PC which uses a Monte Carlo method to calculate the average solid angle subtended by a rectangular or circular detector window to a coaxial or non-coaxial rectangular, circular or point source. The advantage of the Monte Carlo method is that it allows the calculation of average solid angle for source-detector geometries that are difficult to analyse by analytical methods. The values of solid angle are calculated to accuracies of typically better than 0.1%. The calculated values from the Monte Carlo method agree closely with those produced by polygon approximation and numerical integration by Gardner and Verghese, and others.

Download full-text PDF

Source
http://dx.doi.org/10.1093/oxfordjournals.rpd.a006107DOI Listing

Publication Analysis

Top Keywords

solid angle
16
monte carlo
16
carlo method
16
average solid
12
calculation average
8
angle subtended
8
rectangular circular
8
solid
4
angle
4
subtended detector
4

Similar Publications

The wetting and spreading behaviors of metal droplets on solid substrates are critical aspects of additive manufacturing. However, the inherent characteristics of metal droplets, including high surface tension, elevated viscosity, and extreme temperatures, pose significant challenges for wetting and spreading on nonwetting substrates. Herein, this work proposes a strategy that employs a two-dimensional (2D) orthogonal ultrasonic field to construct a vibration deposition substrate with radial vibration amplitude gradient, thereby enhancing the wettability and adhesive strength of impacting metal droplets ejected by a piezoelectric micro-jet device.

View Article and Find Full Text PDF

Unveiling the Li/Electrolyte Interface Behavior for Dendrite-Free All-Solid-State Lithium Metal Batteries by Operando Nano-Focus WAXS.

Adv Sci (Weinh)

January 2025

TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany.

Poly(ethylene oxide) (PEO)-based solid composite electrolytes suffer from poor conductivity and lithium dendrite growth, especially toward the metallic lithium metal anode. In this study, succinonitrile (SN) is incorporated into a PEO composite electrolyte to fabricate an electrode-compatible electrolyte with good electrochemical performance. The SN-doped electrolyte successfully inhibits the lithium dendrite growth and facilitates the SEI layer formation, as determined by the operando nanofocus wide-angle X-ray scattering (nWAXS), meanwhile, stably cycled over 500 h in Li/SN-PEO/Li cell.

View Article and Find Full Text PDF

Valley charge-transfer insulator in twisted double bilayer WSe.

Nat Commun

January 2025

National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, China.

In flat-band systems, emergent physics can be substantially modified by the presence of another nearby electronic band. For example, a Mott˘Hubbard insulator can turn into a charge transfer insulator if other electronic states enter between the upper and lower Hubbard bands. Here, we introduce twisted double bilayer (TDB) WSe, with twist angles near 60°, as a controllable platform in which the K-valley band can be tuned to close vicinity of the Γ-valley moiré flat band.

View Article and Find Full Text PDF

Multienergy Barrier Anti-/Deicing Surface with Excellent Photothermal Effect.

ACS Appl Mater Interfaces

January 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.

Superhydrophobic surfaces are considered to be an effective method for anti-icing, but passive anti-icing alone is not as effective as it should be, so it is crucial to develop effective anti-icing techniques. In this study, a photothermal anti-icing structure with multienergy barriers was designed by combining active and passive anti-icing technologies and prepared by a three-step method of laser etching, hydrothermal growth of nanostructures, and chemical modification based on the Cassie-Baxter-Wenzel transition theory. The experimental results show that the static water contact angle of the prepared surface is up to 160°, the sliding angle is less than 3.

View Article and Find Full Text PDF

Liquid slide electrification: advances and open questions.

Soft Matter

January 2025

Institute for Photovoltaics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany.

This review is about drops of a liquid with high dielectric permittivity that slide over a solid surface with high electrical resistivity. A typical situation is a water drop sliding down a tilted hydrophobic plate. It has been realized recently that such drops spontaneously acquire a charge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!