Protein stability is usually characterized calorimetrically by a melting temperature and related thermodynamic parameters. Despite its importance, the microscopic origin of the melting transition and the relationship between thermodynamic stability and dynamics remains a mystery. Here, NMR relaxation parameters were acquired for backbone 15NH groups of the 56 residue immunoglobulin-binding domain of streptococcal protein G over a pre-denaturation temperature range of 5-50 degrees C. Relaxation data were analyzed using three methods: the standard three-Lorentzian model free approach; the F(omega)=2omegaJ(omega) spectral density approach that yields motional correlation time distributions, and a new approach that determines frequency-dependent order parameters. Regardless of the method of analysis, the temperature dependence of internal motional correlation times and order parameters is essentially the same. Nanosecond time-scale internal motions are found for all NHs in the protein, and their temperature dependence yields activation energies ranging up to about 33kJ/mol residue. NH motional barrier heights are structurally correlated, with the largest energy barriers being found for residues in the most "rigid" segments of the fold: beta-strands 1 and 4 and the alpha-helix. Trends in this landscape also parallel the free energy of folding-unfolding derived from hydrogen-deuterium (H-D) exchange measurements, indicating that the energetics for internal motions occurring on the nanosecond time-scale mirror those occurring on the much slower time-scale of H-D exchange. Residual heat capacities, derived from the temperature dependence of order parameters, range from near zero to near 100J/mol K residue and correlate with this energy landscape. These results provide a unique picture of this protein's energy landscape and a relationship between thermodynamic stability and dynamics that suggests thermosensitive regions in the fold that could initiate the melting process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0022-2836(02)01155-5 | DOI Listing |
Appl Physiol Nutr Metab
January 2025
Coventry University, Centre for Sport Exercise and Life Sciences, Coventry, Warwickshire, United Kingdom of Great Britain and Northern Ireland;
Exercise and passive heating share some acute physiological responses. These include increases in body temperature, sweat rate, blood flow, heart rate, and redistribution of plasma and blood volume. These responses can vary depending on the heating modality or dose (e.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Physical-Chemistry, Complutense University of Madrid, Madrid, Spain.
Intracellular liquid-liquid phase separation (LLPS) of proteins and nucleic acids is a fundamental mechanism by which cells compartmentalize their components and perform essential biological functions. Molecular simulations play a crucial role in providing microscopic insights into the physicochemical processes driving this phenomenon. In this study, we systematically compare six state-of-the-art sequence-dependent residue-resolution models to evaluate their performance in reproducing the phase behaviour and material properties of condensates formed by seven variants of the low-complexity domain (LCD) of the hnRNPA1 protein (A1-LCD)-a protein implicated in the pathological liquid-to-solid transition of stress granules.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.
Multimode luminescent materials exhibit tunable photon emissions under different excitation or stimuli channels, endowing them high encoding capacity and confidentiality for anti-counterfeiting and encryption. Achieving multimode luminescence into a stable single material presents a promising but remains a challenge. Here, the downshifting/upconversion emissions, color-tuning persistent luminescence (PersL), temperature-dependent multi-color emissions, and hydrochromism are integrated into Er ions doped CsNaYbCl nanocrystals (NCs) by leveraging shallow defect levels and directed energy migration.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.
Controlling the Mott transition through strain engineering is crucial for advancing the development of memristive and neuromorphic computing devices. Yet, Mott insulators are heterogeneous due to intrinsic phase boundaries and extrinsic defects, posing significant challenges to fully understanding the impact of microscopic distortions on the local Mott transition. Here, using a synchrotron-based scanning X-ray nanoprobe, we studied the real-space structural heterogeneity during the structural phase transition in a VO thin film.
View Article and Find Full Text PDFNano Lett
January 2025
Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, Tennessee 37831, United States.
Thermally driven transitions between ferromagnetic and paramagnetic phases are characterized by critical behavior with divergent susceptibilities, long-range correlations, and spin dynamics that can span kHz to GHz scales as the material approaches the critical temperature , but it has proven technically challenging to probe the relevant length and time scales with most conventional measurement techniques. In this study, we employ scanning nitrogen-vacancy center based magnetometry and relaxometry to reveal the critical behavior of a high- ferromagnetic oxide near its Curie temperature. Cluster analysis of the measured temperature-dependent nanoscale magnetic textures points to a 3D universality class with a correlation length that diverges near .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!