Calcium-dependent inactivation and depletion of synaptic cleft calcium ions combine to regulate rod calcium currents under physiological conditions.

Eur J Neurosci

Department of Ophthalmology, University of Nebraska Medical Center, 985540 Nebraska Medical Center, Omaha, NE 68198-5540, USA.

Published: December 2002

L-type Ca2+ currents (I(Ca)) in rod photoreceptors exhibit Ca2+-dependent inactivation. Perforated-patch whole-cell recordings were obtained from isolated rods of the tiger salamander using 1.8 mm Ca2+ in the bathing medium to determine the extent of Ca2+-dependent inactivation of I(Ca) with physiological [Ca2+] and endogenous buffering. I(Ca) was measured with voltage ramps applied before and after 5-s steps to -40, -30, -20, or -10 mV. Long depolarizing steps in isolated rods produced inactivation of I(Ca) ranging from 15% at -40 mV to > 80% at -10 mV. Because, in addition to Ca2+-dependent inactivation, depletion of synaptic cleft Ca2+ accompanying activation of I(Ca) can reduce presynaptic I(Ca) at calycal synapses, we investigated whether a similar mechanism worked at the invaginating rod synapse. Rods from retinal slices with intact synapses were compared with isolated rods in which synaptic cleft depletion is absent. I(Ca) was more strongly depressed by depolarization of rods in retinal slices, with ICa reduced by 47% following voltage steps to -40 mV. The depression of currents by depolarization was also greater for rods from retinal slices than isolated rods when Ca2+ was replaced with Ba2+ to reduce Ca2+-dependent inactivation. The stronger depolarization-evoked inhibition of I(Ca) in retinal slices compared to isolated rods probably reflects depletion of synaptic cleft Ca2+ arising from sustained Ca2+ influx. Inactivation of I(Ca) exhibited slow onset and recovery. These findings suggest that Ca2+-dependent inactivation and depletion of synaptic cleft Ca2+ may combine to regulate I(Ca) in response to light-evoked changes in rod membrane potential.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1460-9568.2002.02277.xDOI Listing

Publication Analysis

Top Keywords

synaptic cleft
20
ca2+-dependent inactivation
20
isolated rods
20
depletion synaptic
16
retinal slices
16
inactivation depletion
12
inactivation ica
12
cleft ca2+
12
rods retinal
12
ica
11

Similar Publications

Major depressive disorder (MDD) is a common mood condition affecting multiple brain regions and cell types. Changes in astrocyte function contribute to depressive-like behaviors. However, while neuronal mechanisms driving MDD have been studied in some detail, molecular mechanisms by which astrocytes promote depression have not been extensively explored.

View Article and Find Full Text PDF

Uncompetitive NMDAR (N-methyl-D-aspartate receptor) antagonists restore impaired neural plasticity, reverse depressive-like behavior in animal models, and relieve major depressive disorder (MDD) in humans. This review integrates recent findings from in silico, in vitro, in vivo, and human studies of uncompetitive NMDAR antagonists into the extensive body of knowledge on NMDARs and neural plasticity. Uncompetitive NMDAR antagonists are activity-dependent channel blockers that preferentially target hyperactive GluN2D subtypes because these subtypes are most sensitive to activation by low concentrations of extracellular glutamate and are more likely activated by certain pathological agonists and allosteric modulators.

View Article and Find Full Text PDF

Terminal Schwann cells (TSCs) are capable of regulating acetylcholine (ACh) release at the neuromuscular junction (NMJ). We have identified GABA as a gliotransmitter at mouse NMJs. When ACh activates α7 nicotinic ACh receptor (nAChRs) on TSCs, GABA is released and activates GABA receptors on the nerve terminal that subsequently reduce ACh release.

View Article and Find Full Text PDF

Revealing and mitigating the inhibitory effect of serotonin on HRP-mediated protein labelling.

Sci Rep

December 2024

Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.

Proximity-dependent biotinylation coupled with mass spectrometry enables the characterization of subcellular proteomes. This technique has significantly advanced neuroscience by revealing sub-synaptic protein networks, such as the synaptic cleft and post-synaptic density. Profiling proteins at this detailed level is essential for understanding the molecular mechanisms of neuronal connectivity and transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!