Analysis of the PC12 cell transcriptome after differentiation with pituitary adenylate cyclase-activating polypeptide (PACAP).

J Neurochem

Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, NIH, Bethesda, Maryland, USA.

Published: December 2002

Pituitary adenylate cyclase-activating polypeptide (PACAP) promotes neurite outgrowth and inhibits proliferation of rat pheochromocytoma (PC12) cells. Characterizing the PACAP-differentiated PC12 cell transcriptome should provide genetic insight into how these processes occur in these cells, and in neuronal precursors in vivo. For this purpose, RNA samples were collected from PC12 cells before or after a 6-h treatment with PACAP, from which a labeled cDNA was hybridized to a high-density cDNA array containing 15 365 genes. The genomic response to PACAP involves at least 73 genes. Among the genes differentially expressed in the presence of PACAP, 71% were up regulated, and 29% down regulated, 2-fold or more. Sixty-six percent of the messages affected by PACAP code for functionally categorized proteins, most not previously known to be regulated during PC12 cell differentiation. PACAP has been shown to induce PC12 cell neurite outgrowth through the mitogen-activated protein kinase kinase (MEK) pathway independently of protein kinase A (PKA). Therefore treatments were conducted in the absence or presence of the PKA inhibitor H89, or the MEK inhibitor U0126 in order to identify subsets of genes involved in specific aspects of PC12 cell differentiation. Co-treatment of PC12 cells with PACAP plus H89 revealed a cluster of five genes specifically regulated through the PKA pathway and co-treatment of the cells with PACAP and U0126 revealed a cluster of 13 messages specifically activated through the MEK pathway. Many of the known genes regulated by PACAP have been associated with neuritogenesis (i.e. villin 2 or annexin A2) or cell growth (i.e. growth arrest specific 1 or cyclin B2). Thus, some of the expressed sequence tags (ESTs) that exhibit the same regulation pattern (i.e. AU016391 or AW552690) may also be involved in the neuritogenic and anti-mitogenic effects of PACAP in PC12 cells. Among the 73 PACAP regulated genes, 10 are disqualified on pharmacological grounds as actors in PACAP-mediated neurite outgrowth or growth arrest, leaving 63 new PACAP-regulated genes implicated in neuronal differentiation. Thirteen of these are candidates for mediating ERK-dependent neurite outgrowth, and 47 are possibly involved in the ERK-independent growth arrest induced by PACAP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186721PMC
http://dx.doi.org/10.1046/j.1471-4159.2002.01242.xDOI Listing

Publication Analysis

Top Keywords

pc12 cell
20
neurite outgrowth
16
pc12 cells
16
pacap
13
cells pacap
12
growth arrest
12
cell transcriptome
8
pituitary adenylate
8
adenylate cyclase-activating
8
cyclase-activating polypeptide
8

Similar Publications

Parkinson's disease (PD) is a limb movement disorder caused by the degeneration of brain neurons and seriously affects the quality of life of the elderly. However, the current drugs are symptomatic treatments that cannot prevent or delay the development of the disease. Targeted therapy for pathogenesis may be the direction of development in the future.

View Article and Find Full Text PDF

Growing evidence suggests that plant compounds are emerging as a tremendous source for slowing the onset and progression of Alzheimer's disease (AD). Ursonic acid (UNA) is a naturally occurring pentacyclic triterpenoid with some hypoglycemic, anticancer, and antiinflammatory activities. However, the pharmacological effects of UNA on AD are still unknown.

View Article and Find Full Text PDF

Therapeutic Potential of Shilong Qingxue Granule and Its Extract Against Glutamate Induced Neural Injury: Insights from In Vivo and In Vitro Models.

J Ethnopharmacol

January 2025

Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China. Electronic address:

Ethnopharmacological Relevance: Shilong Qingxue Granule (SQG), a traditional Chinese medicine, effectively treats the secondary neurological damage and functional deficits caused by cerebral hemorrhage, though its exact mechanism remains unclear.

Aim Of The Study: This study aimed to investigate the effects of SQG and its mechanisms.

Materials And Methods: we evaluated the effects of SQG and its extracts on glutamate induced nerve damage using in vivo and in vitro models.

View Article and Find Full Text PDF

The role of GSK3β signaling mediated lysosomal biosynthesis dysregulation in fluoride-induced neurological impairment.

Food Chem Toxicol

January 2025

Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China. Electronic address:

Neurological dysfunction induced by fluoride is still one of major concern worldwide, yet the underlying mechanisms remain elusive. To explore whether fluoride disrupts lysosomal biosynthesis via the GSK3β signaling, leading to neurological damage, both in vivo rat models and in vitro PC12 cell models were conducted. Subsequent findings revealed reduced spatial learning and memory abilities, decreased hippocampal neurons, and disrupted neuronal arrangement in NaF-treated rats.

View Article and Find Full Text PDF

In situ biosensing for cell viability and drug evaluation in 3D extracellular matrix cultures: Applications in cytoprotection of oxidative stress injury.

Talanta

January 2025

Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China. Electronic address:

The rise of extracellular matrix (ECM)-supported three-dimensional (3D) cell culture systems which bridge the gap between in vitro culture and in vivo living tissue for pharmacological models has increased the need for simple and robust cell viability assays. This study presents the development of an effective biosensing assay for in situ monitoring of the catecholamine neurotransmitter exocytosis levels for cell viability assessment within complicated cell-encapsulated hydrogel milieu. Firstly, the biosensing assay demonstrated the distinction among four pheochromocytoma (PC12) cell lines with varying degrees of differentiation and the discrepancy in cellular neurosecretory capacity between two-dimensional (2D) monolayer and 3D agarose hydrogel culture conditions, accompanied by morphological distinctions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!