The receptor activator of NF-kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG), are the important proteins implicated in osteoclastogenesis. In this study, we investigated the expressions of RANKL and OPG in cultured human periodontal ligament (PDL) cells and their roles in osteoclastogenesis. Northern blotting revealed that the OPG mRNA was down-regulated remarkably by application of 10-8 m one-alpha, 25-dihydroxyvitamin D3[1,25-(OH)2D3] and 10-7 m dexamethasone (Dex). In contrast, RANKL mRNA was up-regulated by the same treatment. Western blotting demonstrated decrease of OPG by the application of 1,25-(OH)2D3 and Dex. Tartrate-resistant acid phosphatase-positive multinuclear cells were markedly induced when the PDL cells were cocultured with mouse bone marrow cells in the presence of an anti-OPG antibody together with 1,25-(OH)2D3 and Dex. These results indicate that PDL cells synthesize both RANKL and OPG and that inactivation of OPG may play a key role in the differentiation of osteoclasts.

Download full-text PDF

Source
http://dx.doi.org/10.1034/j.1600-0765.2002.01603.xDOI Listing

Publication Analysis

Top Keywords

pdl cells
12
receptor activator
8
activator nf-kappa
8
nf-kappa ligand
8
human periodontal
8
periodontal ligament
8
rankl opg
8
125-oh2d3 dex
8
cells
6
opg
6

Similar Publications

Osteogenesis imperfecta (OI) is a fairly common generalized connective disorder characterized by low bone mass, bone deformities and impaired bone quality that predisposes affected individuals to musculoskeletal fragility. Periodontal ligament (PDL)-alveolar bone and PDL-cementum entheses' roles under OI conditions during physiological loading and orthodontic forces remain largely unknown. In addition, bisphosphonates (e.

View Article and Find Full Text PDF

Multi-omics approach reveals TGF-β signaling-driven senescence in periodontium stem cells.

J Adv Res

December 2024

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. Electronic address:

Introduction: The periodontal ligament (PDL), a dynamic connective tissue that anchors teeth to the alveolar bone, enables tooth retention and facilitates continuous turnover. The integrity of the periodontium is maintained by periodontal ligament stem cells (PDLSCs), whose dysfunction and senescence with age can disrupt tissue homeostasis, hinder injury repair, and lead to tooth loss, ultimately impacting overall health. Transforming growth factor-β1 (TGF-β1) is known for its regenerative properties and as a functional paracrine factor in stem cell therapy, but its precise role in modulating PDLSC activity remains controversial and poorly understood.

View Article and Find Full Text PDF

Endo 180 participates in collagen remodeling of the periodontal ligament during orthodontic tooth movement.

BMC Oral Health

December 2024

Department of Orthodontics, Central Laboratory, Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School, 22th Zhongguancun South Ave, Beijing, 100081, China.

Background: Orthodontic tooth movement (OTM) relies on the remodeling of periodontal tissues, including the periodontal ligament (PDL) and alveolar bone. Collagen remodeling plays a crucial role during this process, allowing for the necessary changes in the PDL's structure and function. Endo180, an urokinase plasminogen activator receptor-associated protein, is a transmembrane receptor regulated collagen remodeling.

View Article and Find Full Text PDF

Successful Multi-Modal Laser Intervention and Histopathological Evaluation of Multiple Glomangiomas.

Lasers Surg Med

December 2024

Department of Dermatology, Veterans Health Administration, San Antonio, Texas, USA.

Objectives: Glomangiomas are benign vascular malformations that exist within the spectrum of glomuvenous malformations which consist of varying amounts of glomus cells, vascular spaces, and smooth muscle. Glomangiomas are often treated due to associated pain, particularly when located on pressure areas such as the back or extensor surfaces, which can cause difficulty with certain activities and occupational functions. Histologically glomangiomas consist of prominent dilated vascular spaces lined by glomus cells typically situated in the deep-dermis to subcutaneous fat which limits treatment to modalities capable of reaching the depth of the tumor including excision, sclerotherapy, and laser therapy.

View Article and Find Full Text PDF

The increasing effective, detectable, and targeted anticancer systems are driven by the growing cancer incidence and the side effects of current drugs. Natural products like saponin and apigenin have emerged as valuable compounds for precise treatment. Recent advancements in bioactive metal-organic frameworks (MOFs) have introduced multifunctional particles suitable for cellular imaging, targeted drug delivery, and early cancer treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!