Transcription factors often belong to multigene families and their individual contribution in a particular regulatory network remains difficult to assess. We show here that specific members from a family of conserved Arabidopsis bZIP transcription factors, the TGA proteins, are regulated in their protein stability by developmental stage-specific proteolysis. Using GFP fusions of three different Arabidopsis TGA factors that represent members of distinct subclasses of the TGA factor family, we demonstrate that two of these TGA proteins are specifically targeted for proteolysis in mature leaf cells. Using a supershift gel mobility assay, we found evidence for similar regulation of the cognate proteins as compared to the GFP fusion proteins expressed under the cauliflower mosaic virus (CaMV) 35S promoter. Using various inhibitors, we showed that the expression of at least one of these three TGA factors could be stabilized by inhibition of proteasome-mediated proteolysis. This study indicates that TGA transcription factors may be regulated by distinct pathways of targeted proteolysis that can serve to modulate the contribution of specific members of a multigene family in complex regulatory pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-313x.2002.01461.x | DOI Listing |
Blood
January 2025
Children's Hospital of Philadelphia & University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States.
Robust genetic characterization of paediatric AML has demonstrated that fusion oncogenes are highly prevalent drivers of AML leukemogenesis in young children. Identification of fusion oncogenes associated with adverse outcomes has facilitated risk stratification of patients, although successful development of precision medicine approaches for most fusion-driven AML subtypes have been historically challenging. This knowledge gap has been in part due to difficulties in targeting structural alterations involving transcription factors and in identification of a therapeutic window for selective inhibition of the oncofusion without deleterious effects upon essential wild-type proteins.
View Article and Find Full Text PDFPLoS One
January 2025
School of Life Science, Inner Mongolia University, Hohhot, PR China.
Ovarian tissue cryopreservation addresses critical challenges in fertility preservation for prepubertal female cancer patients, such as the lack of viable eggs and hormonal deficiencies. However, mitigating follicle and granulosa cell damage during freeze-thaw cycles remains an urgent issue. Luteinizing hormone (LH), upon binding to luteinizing hormone receptors (LHR) on granulosa cells, enhances estrogen synthesis and secretion, contributing to the growth of granulosa cells and follicles.
View Article and Find Full Text PDFPLoS One
January 2025
Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand.
Cadmium is a non-essential element and neurotoxin that causes neuroinflammation, which leads to neurodegenerative diseases and brain cancer. To date, there are no specific or effective therapeutic agents to control inflammation and alleviate cadmium-induced progressive destruction of brain cells. Fluoroquinolones (FQs), widely used antimicrobials with effective blood-brain barrier penetration, show promise in being repurposed as anti-inflammatory drugs.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea. Electronic address:
Cd99 molecule-like 2 (Cd99l2) is a type I transmembrane protein that plays a role in the transmigration of leukocytes across vascular endothelial cells. Despite its high expression in the brain, the role of Cd99l2 remains elusive. We find that Cd99l2 is expressed primarily in neurons and positively regulates neurite outgrowth and the development of excitatory synapses.
View Article and Find Full Text PDFNeurotox Res
January 2025
Molecular Neuropsychiatry Section, Intramural Research Program, NIH/ NIDA, 21224, Baltimore, MD, U.S.A.
To identify factors involved in methamphetamine (METH) neurotoxicity, we comprehensively searched for genes which were differentially expressed in mouse striatum after METH administration using differential display (DD) reverse transcription-PCR method and sequent single-strand conformation polymorphism analysis, and found two DD cDNA fragments later identified as mRNA of Nedd4 (neural precursor cell expressed developmentally downregulated 4) WW domain-binding protein 5 (N4WBP5), later named Nedd4 family-interacting protein 1 (Ndfip1). It is an adaptor protein for the binding between Nedd4 of ubiquitin ligase (E3) and target substrate protein for ubiquitination. Northern blot analysis confirmed drastic increases in Ndfip1 mRNA in the striatum after METH injections, and in situ hybridization histochemistry showed that the mRNA expression was increased in the hippocampus and cerebellum at 2 h-2 days, in the cerebral cortex and striatum at 18 h-2 days after single METH administration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!