Computer-aided surgery (CAS), the intraoperative application of biomedical visualization techniques, appears to be one of the most promising fields of application for augmented reality (AR), the display of additional computer-generated graphics over a real-world scene. Typically a device such as a head-mounted display (HMD) is used for AR. However, considerable technical problems connected with AR have limited the intraoperative application of HMDs up to now. One of the difficulties in using HMDs is the requirement for a common optical focal plane for both the realworld scene and the computer-generated image, and acceptance of the HMD by the user in a surgical environment. In order to increase the clinical acceptance of AR, we have adapted the Varioscope (Life Optics, Vienna), a miniature, cost-effective head-mounted operating binocular, for AR. In this paper, we present the basic design of the modified HMD, and the method and results of an extensive laboratory study for photogrammetric calibration of the Varioscope's computer displays to a real-world scene. In a series of 16 calibrations with varying zoom factors and object distances, mean calibration error was found to be 1.24 +/- 0.38 pixels or 0.12 +/- 0.05 mm for a 640 x 480 display. Maximum error accounted for 3.33 +/- 1.04 pixels or 0.33 +/- 0.12 mm. The location of a position measurement probe of an optical tracking system was transformed to the display with an error of less than 1 mm in the real world in 56% of all cases. For the remaining cases, error was below 2 mm. We conclude that the accuracy achieved in our experiments is sufficient for a wide range of CAS applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2002.803099 | DOI Listing |
Front Robot AI
December 2024
Department of Cognitive Robotics, Delft University of Technology, Delft, Netherlands.
In percutaneous pelvic trauma surgery, accurate placement of Kirschner wires (K-wires) is crucial to ensure effective fracture fixation and avoid complications due to breaching the cortical bone along an unsuitable trajectory. Surgical navigation via mixed reality (MR) can help achieve precise wire placement in a low-profile form factor. Current approaches in this domain are as yet unsuitable for real-world deployment because they fall short of guaranteeing accurate visual feedback due to uncontrolled bending of the wire.
View Article and Find Full Text PDFJMIR Res Protoc
December 2024
Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States.
Background: Pediatric patients with cancer have limited options to self-manage their health while they are undergoing treatments in the hospital and after they are discharged to their homes. Extended reality (ER) using head-mounted displays has emerged as an immersive method of improving pain and mental health and promoting health-enhancing physical activity among a variety of clinical groups, but there is currently no established protocol for improving both physical and mental health in pediatric cancer rehabilitation.
Objective: This phase I, pilot, feasibility randomized controlled trial aims to investigate the potential effects of a 14-week ER program on physical activity participation and indicators of health among pediatric patients with cancer who undergo bone marrow transplantation.
J Imaging Inform Med
December 2024
Biomedical Data Analysis and Visualisation (BDAV) Lab, School of Computer Science, The University of Sydney, Camperdown, NSW, 2050, Australia.
In surgical stabilization of rib fractures (SSRF), the current standard relies on preoperative CT imaging and often incorporates ultrasound (US) imaging. As an alternative, mixed reality (MR) technology holds promise for improving rib fracture localization. This study presents an MR-based visualization system designed for SSRF in a clinical setting.
View Article and Find Full Text PDFGait Posture
December 2024
Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ear Institute, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA.
Purpose: To investigate how adults with unilateral vestibular hypofunction and healthy controls incorporate visual and auditory cues for postural control in an abstract visual environment.
Methods: Participants stood on foam wearing the HTC Vive, observing an immersive 3-wall display of 'stars' that were either static or dynamic (moving front to back at 32 mm, 0.2 Hz) with no sound, static white noise, or moving white noise played via headphones.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!