The requirement for pulsatile LH and the LH surge for the acquisition of oocyte fertilizing potential and embryo developmental competency was examined in Zebu heifers. Follicular growth was superstimulated using the GnRH agonist-LH protocol in which pulsatile LH and the preovulatory LH surge are blocked. In experiment 1, heifers were assigned on Day 7 of the estrous cycle to receive: group 1A (n = 5), 1.5 mg norgestomet (NOR) implant; group 1B (n = 5), GnRH agonist implant. Follicular growth was superstimulated with 2x daily injections of FSH from Day 10 (a.m.) to Day 13 (p.m.), with PGF2alpha injection on Day 12 (a.m.). Heifers were ovariectomized on Day 15 (a.m.) and oocytes were placed immediately into fertilization, without 24 h maturation. Respective cleavage and blastocyst development rates were: group 1A, 0/64 oocytes (0%) and 0/64 (0%); group 1B, 34/70 oocytes (48.6%) and 2/70 (2.9%). In experiment 2, heifers were assigned on Day 7 of the estrous cycle to receive: group 2A (n = 10), 1.5 mg NOR implant; group 2B (n = 10), GnRH agonist implant; group 2C (n = 10), GnRH agonist implant. Follicular growth was superstimulated as in experiment 1 above. Heifers in groups 2A and 2B received an injection of 25 mg LH on Day 14 (p.m.) and all heifers were ovariectomized on Day 15 (a.m.); oocytes were placed immediately into fertilization without 24 h maturation. Cleavage rates were similar for heifers in group 2A (84/175 oocytes, 48.0%), group 2B (61/112 oocytes, 54.5%) and group 2C (69/163, 42.3%). Blastocyst development rates were similar for heifers in group 2A (22/175 oocytes, 12.6%) and group 2B (25/112 oocytes, 22.3%) and lower (P < 0.05) for heifers in group 2C (9/163 oocytes, 5.5%). Oocytes obtained from heifers treated with GnRH agonist, without injection of exogenous LH, underwent cleavage indicating that neither pulsatile LH nor the preovulatory LH surge are obligatory for nuclear maturation in cattle oocytes. Exposure to a surge-like increase in plasma LH increased embryo developmental competency indicating that the preovulatory LH surge promotes cytoplasmic maturation. The findings have important implications for controlling the in vivo maturation of oocytes before in vitro procedures including nuclear transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0093-691x(02)01056-7DOI Listing

Publication Analysis

Top Keywords

preovulatory surge
16
gnrh agonist
16
group
13
follicular growth
12
growth superstimulated
12
experiment heifers
12
implant group
12
group gnrh
12
agonist implant
12
oocytes
12

Similar Publications

Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1 neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle.

View Article and Find Full Text PDF

Multiple mating enhances luteogenesis increasing corpus luteum perfusion area and progesterone production in ewes.

Anim Reprod Sci

January 2025

Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Ruta 8 km 18, Montevideo 1300, Uruguay.

Article Synopsis
  • * A study compared two groups of ewes—one allowed multiple matings and the other not—to assess the impact on corpus luteum (CL) development and functionality.
  • * The results showed that mated ewes had longer estrus, larger ovulatory follicles, and better CL perfusion and progesterone levels compared to the control group, indicating enhanced reproductive function.
View Article and Find Full Text PDF

Cell Communications Between GCs and Macrophages Contribute to the Residence of Macrophage in Preovulatory Follicles.

Am J Reprod Immunol

November 2024

Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Problem: There were not only granulosa cells (GCs) but also immune cells in preovulatory follicular fluid. The objective of this study was to explore the interactions between macrophages and GCs via adhesion molecules in preovulatory follicles and the regulatory mechanisms of the interactions.

Method Of Study: Flow cytometry and immunofluorescence were used to detect the expression of ITGB1 in macrophages and fibronectin (FN)1 in GCs in preovulatory follicles from 12 patients.

View Article and Find Full Text PDF

Shifting GnRH neuron ensembles underlie successive preovulatory luteinizing hormone surges.

J Neurosci

November 2024

Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EG, United Kingdom

The gonadotropin-releasing hormone (GnRH) neurons operate as a neuronal ensemble exhibiting coordinated activity once every reproductive cycle to generate the preovulatory GnRH surge. Using GCaMP fibre photometry at the GnRH neuron distal dendrons to measure the output of this widely scattered population in female mice, we find that the onset, amplitude, and profile of GnRH neuron surge activity exhibits substantial variability from cycle to cycle both between and within individual mice. This was also evident when measuring successive proestrous luteinizing hormone surges.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility in women of reproductive age, and obesity can increase the severity and development of the PCOS phenotype. Prenatal testosterone (T) treatment between gestational days 30-90 advanced puberty and disrupted the reproductive and metabolic phenotype in female sheep, recapitulating attributes of women with PCOS, with postnatal obesity amplifying its severity. On the other hand, prenatal T treatment from gestational days 60-90 led to a much milder phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!