Naive peripheral B cells are maintained in sufficient numbers and diversity to mount effective immune responses against infectious agents. However, the size and repertoire of this B cell pool is constantly diminished by normal cell turnover and Ag activation. Homeostatic (Ag-independent) proliferation in response to B cell depletion is one mechanism to compensate for this cell loss. We have used purified CFSE-labeled B cells and an adoptive transfer model system to show that immature and mature B cells divide in a variety of B cell-deficient (scid, xid, IL-7(-/-), and sublethally irradiated) hosts. Homeostatic B cell proliferation is T cell independent, and B cells that have replicated by this mechanism retain the antigenic phenotype of naive B cells. Replication is significantly reduced in B cell-sufficient normal or B cell-reconstituted immunodeficient recipients by the action of competing mature follicular B cells. Using xid mice and transcription factor knockouts, we show that the activation signal(s) that lead to homeostatic B cell proliferation require Bruton's tyrosine kinase; however, c-Rel, a Bruton's tyrosine kinase-induced NF-kappaB/Rel transcription factor critical for Ag and mitogen stimulation, is dispensable, indicating the uniqueness of this activation pathway. Survival and replication signals can also be separated, because the transcription factor p50 (NF-kappaB1), which is required for the survival of peripheral B cells, is not necessary for homeostatic replication. Homeostatic B cell proliferation provides an Ag-independent mechanism for the maintenance and expansion of naive B cells selected into the mature B cell pool.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.169.12.6795DOI Listing

Publication Analysis

Top Keywords

homeostatic cell
12
cell proliferation
12
transcription factor
12
cell
10
proliferation response
8
response cell
8
cells
8
peripheral cells
8
cell pool
8
naive cells
8

Similar Publications

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Antiamyloid antibody treatments modestly slow disease progression in mild dementia due to AD. Emerging evidence shows that homeostatic dysregulation of the brain immune system, especially that orchestrated by microglia, plays an important role in disease onset and progression.

View Article and Find Full Text PDF

Glia are increasingly appreciated as serving an important function in the control of sleep and circadian rhythms. Glial cells in Drosophila and mammals regulate daily rhythms of locomotor activity and sleep as well as homeostatic rebound following sleep deprivation. In addition, they contribute to proposed functions of sleep, with different functions mapping to varied glial subtypes.

View Article and Find Full Text PDF

Endocytic recycling is central to circadian collagen fibrillogenesis and disrupted in fibrosis.

Elife

January 2025

Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.

Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis.

View Article and Find Full Text PDF

Circadian Rhythms and Lung Cancer in the Context of Aging: A Review of Current Evidence.

Aging Dis

January 2025

Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.

Circadian rhythm is the internal homeostatic physiological clock that regulates the 24-hour sleep/wake cycle. This biological clock helps to adapt to environmental changes such as light, dark, temperature, and behaviors. Aging, on the other hand, is a process of physiological changes that results in a progressive decline in cells, tissues, and other vital systems of the body.

View Article and Find Full Text PDF

Background: Perinatal growth and nutrition have been shown to be determinants in the programming of different tissues, such as adipose tissue, predisposing individuals to metabolic alterations later in life. Previous studies have documented an increased risk of metabolic disturbances and low-grade inflammation in prepubertal children with a history of extrauterine growth restriction (EUGR). The aim of this study was to evaluate possible alterations resulting from impaired growth during early childhood and their impact on young adult health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!