Inhibition of the Na-K-2Cl (NKCC) cotransporter by loop diuretics is associated with airway relaxation, but there has been no direct evidence for the expression of this protein in airway smooth muscle. Thus we hypothesized that a NKCC cotransporter is present and functional in airway smooth muscle cells. Monoclonal and polyclonal antibodies were used first to demonstrate the presence of a NKCC cotransporter protein in isolated human fetal trachea and normal human bronchial smooth muscle cells (BSMC) by Western blotting. The cotransporter protein was then localized by immunohistochemical staining to airway smooth muscle cells in culture and in situ. The localization was confirmed by indirect immunofluorescence and laser confocal microscopy in the BSMC. Cotransporter function in BSMC was also confirmed in vitro by bumetanide-mediated inhibition of rubidium uptake. Our present findings thus document the presence of a functional NKCC cotransporter in human airway smooth muscle, providing a basis for defining the role of this ion cotransporter in airway smooth muscle function.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00621.2002DOI Listing

Publication Analysis

Top Keywords

smooth muscle
28
airway smooth
20
nkcc cotransporter
16
muscle cells
12
cotransporter
8
cotransporter human
8
cotransporter protein
8
smooth
7
muscle
7
airway
6

Similar Publications

Atherosclerosis risk is elevated in diabetic patients, but the underlying mechanism such as the involvement of macrophages remains unclear. Here, we investigated the underlying mechanism related to the pro-inflammatory activation of macrophages in the development of diabetic atherosclerosis. Bioinformatics tools were used to analyze the macrophage-related transcriptome differences in patients with atherosclerosis and diabetic mice.

View Article and Find Full Text PDF

Background: Fibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP.

Methods: Polyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) are a crucial component in the tumor microenvironment (TME) of peritoneal metastasis (PM), where they contribute to tumor progression and metastasis via secretion of interleukin-6 (IL-6). Here, we investigated the role of IL-6 in PM of gastric cancer (GC) and assessed whether anti-IL-6 receptor antibody (anti-IL-6R Ab) could inhibit PM of GC. We conducted immunohistochemical analysis of IL-6 and α-smooth muscle (α-SMA) expressions in clinical samples of GC and PM, and investigated the interactions between CAFs and GC cells in vitro.

View Article and Find Full Text PDF

Mares with endometrosis exhibit histological changes not only in the endometrium but also in the myometrium that suggest possible functional impairment. The molecular background of these changes is not well understood. We hypothesize that the transcriptomic profile of the mare myometrium varies depending on the degree of endometrosis in mares.

View Article and Find Full Text PDF

To investigate the clinicopathological features, diagnosis, genetic alterations, and biological behaviors of hamartomatous inverted hyperplastic polyp (HIHP) in the gastrointestinal tract. The clinical, sonographic, endoscopic and pathologic data of 10 HIHP cases diagnosed at the First Affiliated Hospital of Air Force Medical University, Xi'an, China from January 2013 to March 2024 were collected. Their clinicopathological features and histological morphology were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!