Tau is a microtubule-associated protein involved in microtubule assembly and stabilization. Abnormal filamentous tau deposits constitute a major defining characteristic of several neurodegenerative diseases, including Alzheimer's disease. Although the presence of tau pathology correlates with the symptoms of Alzheimer's disease, there was no genetic evidence linking tau to neurodegeneration until recently. However, since 1998, the identification of more than 25 mutations in the tau gene, associated with frontotemporal dementia and parkinsonism linked to chromosome 17, has demonstrated that tau dysfunction can lead to neurodegeneration and the development of clinical symptoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1471-4914(02)02440-1 | DOI Listing |
Cell Commun Signal
January 2025
Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
Cognitive impairment is a significant complication of type 2 diabetes mellitus (T2DM). However, the mechanisms underlying the development of cognitive dysfunction in individuals with T2DM remain elusive. Herein, we discussed the role of Bmal1, a core circadian rhythm-regulating gene, in the process of T2DM-associated cognitive dysfunction.
View Article and Find Full Text PDFPLoS One
January 2025
Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica, Beerse, Belgium.
The MAPT gene encodes Tau protein, a member of the large family of microtubule-associated proteins. Tau forms large insoluble aggregates that are toxic to neurons in several neurological disorders, and neurofibrillary Tau tangles represent a key pathological hallmark of Alzheimer's disease (AD) and other tauopathies. Lowering Tau expression levels constitutes a potential treatment for AD but the mechanisms that regulate Tau expression at the transcriptional or translational level are not well understood.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Division of Applied Biomedical Science and Biotechnology, School of Health Science, IMU University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
Alzheimer's disease (AD) consists of two main pathologies, which are the deposition of amyloid plaque as well as tau protein aggregation. Evidence suggests that not everyone who carries the AD-causing genes displays AD-related symptoms; they might never acquire AD as well. These individuals are referred to as non-demented individuals with AD neuropathology (NDAN).
View Article and Find Full Text PDFGlia
January 2025
Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA.
Human genetics studies lent firm evidence that microglia are key to Alzheimer's disease (AD) pathogenesis over a decade ago following the identification of AD-associated genes that are expressed in a microglia-specific manner. However, while alterations in microglial morphology and gene expression are observed in human postmortem brain tissue, the mechanisms by which microglia drive and contribute to AD pathology remain ill-defined. Numerous mouse models have been developed to facilitate the disambiguation of the biological mechanisms underlying AD, incorporating amyloidosis, phosphorylated tau, or both.
View Article and Find Full Text PDFAging Brain
December 2024
University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
A growing amount of data has implicated the gene in the risk for Alzheimer's disease (AD), neurodegeneration, and accelerated aging. No studies have investigated the relationship of rs2075650 ('650 on the structural complexity of the brain or plasma markers of neurodegeneration. We used a comprehensive approach to quantify the impact of '650 on brain morphology and multiple cortical attributes in cognitively unimpaired (CU) individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!