We show here that Hsp27 increases its level of expression during the late phase of the keratinocyte differentiation of human HaCat cells. A similar phenomenon was observed when differentiated HaCat cells underwent a dedifferentiation process. In both cases, Hsp27 accumulated in the form of large native structures, which represent the chaperone active form of the protein. Hence, the presence of Hsp27 large oligomers does not appear to be the consequence of a particular differentiation process but should be considered as a marker of endogenous stress conditions. Such conditions may arise when drastic changes in the intracellular protein organization occur, such as during differentiation, dedifferentiation and probably also during the development of the senescent phenotype.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0531-5565(02)00131-6 | DOI Listing |
Curr Issues Mol Biol
December 2024
School of Life Sciences, Yunnan Normal University, Kunming 650500, China.
Previous studies have shown that the endogenous electric field (EF) is an overriding cure in guiding cell migration toward the wound center to promote wound healing, but the mechanism underlying is unclear. In this study, we investigated the molecular mechanism of electric field-guided cell migration in human keratinocyte HaCaT cells. Our results showed that HaCaT cells migrate toward the anode under EFs.
View Article and Find Full Text PDFGels
January 2025
Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
, a prevalent zoonotic pathogen, poses a significant threat to skin wound infections. This study evaluates the bactericidal efficacy of self-assembled peptide hydrogels, PPI45 and PPI47, derived from the defensin-derived peptide PPI42, against ATCC43300. The high-level preparation of PPI45 and PPI47 was achieved with yields of 1.
View Article and Find Full Text PDFGels
January 2025
Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile.
The wound-healing process has usually been related to therapeutic agents with antioxidant properties. Among them, caffeic acid, a cinnamic acid derivative, stands out. However, the use of this natural product is affected by its bioavailability and half-life.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Schleswig-Holstein, Kiel, Germany.
Introduction: Several aspects of the involvement of HPV in the pathogenesis of HPV-associated diseases remain poorly understood including mechanistic aspects of infection and the question of why the majority of HPV-positive HNSCC-patients are non-smokers, whereas HPV-negatives are smokers. Our previous research, based on 1,100 patient samples, hypothesized an explanation for this phenomenon: Smoking induces upregulation of a mucosal protective protein (SLPI), which competes with HPV for binding to Annexin A2 (AnxA2), pivotal for HPV cell entry. Here we investigate the mechanistic aspects of our hypothesis using transfection assays.
View Article and Find Full Text PDFJ Toxicol Environ Health A
January 2025
Department of Morphology, Federal University of Santa Maria, Santa Maria, Brazil.
This study aimed to identify chemical compounds derived from Vassobia breviflora methanolic extract using ESI-ToF-MS and their antioxidant potential activity utilizing the following methods: total phenols, DPPH, and ABTS. The MTT assay measured cytotoxic activity, while DCFH-DA and nitric oxide assays were employed to determine reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels using African green monkey kidney (VERO) and human keratinocyte (HaCat) cell lines. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were assessed in seven clinical isolates and nine ATCC strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!