Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: The purpose of this study was to investigate the morphological changes of bovine mandibular bone following Er,Cr:YSGG laser irradiation in different methods in vitro.
Background Data: Recently, an erbium, chromium/yttrium, scandium, garmet (Er,Cr:YSGG) laser device that emits a laser beam at the wavelength of 2.78 micro m was introduced. This type of infrared laser proved to ablate dental hard tissues effectively. However, the different effects of bone ablation by this laser in different irradiation methods were still unknown.
Materials And Methods: Adult bovine mandibular bones were cut into 24 small pieces, 3-4 cm in length. The parameters of Er,Cr:YSGG laser irradiation were as follows: wavelength was 2.78 micro m, pulse duration was 140-200 micro sec, repetition rate was 20 pulse/sec, power was 4 W, spot size was 1.26 x 10(-3) mm(2), and energy density was 160 J/cm(2). Irradiation methods were different in four groups (six specimens in each group): group A, fixed position and contact mode; group B, fixed position and noncontact mode; group C, nonfixed position and contact mode; and group D, nonfixed position and noncontact mode.
Results: Ablation depth in group A was significantly greater than in group B (p < 0.01). In group A, thermal damage was apparent. In group B, C, and D, thermal damage was minimal.
Conclusion: Er,Cr:YSGG laser allows for precise surgical bone cutting and ablation with minimal thermal damage to adjacent tissue. Irradiation in different methods may achieve different ablation rates and thermal damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/10445470260420740 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!