Objective: To improve the poor efficacy (< 10%) of chemotherapy for patients with hormone-refractory prostate cancer, we investigated a possible cytotoxic effect of carmustine/beta-glucan combination on prostatic cancer PC-3 cells, focusing on a glutathione-dependent detoxifying enzyme, glyoxalase I (Gly-I).

Methods: Carmustine (BCNU) is an anticancer agent and a putative inhibitor of Gly-I, while beta-glucan is a unique, nontoxic polysaccharide extracted from maitake mushrooms. The cytotoxic effects of BCNU or other anticancer agents with beta-glucan on PC-3 cells were assessed by cell-viability testing and Gly-I activity was measured using the spectrophotometric method.

Results: BCNU, 5-fluorouracil (5-FU), and methotrexate (MTX) were capable of inducing approximately a 50% reduction in cell viability at 72 hours, while etoposide, cisplatin, and mitomycin C were all ineffective. Only the combination of BCNU (50 micro ;mol) and beta-glucan (60 micro g/mL) exhibited an enhanced cytotoxicity with an approximate 90% cell viability reduction, but little improvement was seen with any combinations of 5-FU, MTX, or beta-glucon. Gly-I assays revealed that such a profound (approximately 90%) cell death was accompanied by an approximate 80% reduction in Gly-I activity by 6 hours.

Conclusion: This study demonstrates a sensitized cytotoxic effect of BCNU with beta-glucan in PC-3 cells, which was associated with a drastic (approximately 80%) inactivation of Gly-I. Therefore, the BCNU/beta-glucan combination may help to improve current treatment efficacy by targeting Gly-I, which appears to be critically involved in prostate cancer viability.

Download full-text PDF

Source
http://dx.doi.org/10.1089/107555302320825084DOI Listing

Publication Analysis

Top Keywords

pc-3 cells
12
prostatic cancer
8
prostate cancer
8
bcnu anticancer
8
beta-glucan pc-3
8
gly-i activity
8
cell viability
8
90% cell
8
gly-i
6
beta-glucan
5

Similar Publications

Lactoferrin conjugated radicicol nanoparticles enhanced drug delivery and cytotoxicity in prostate cancer cells.

Eur J Pharmacol

January 2025

School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia. Electronic address:

Pyruvate dehydrogenase kinase-1 (PDK1) plays a crucial role in cancer cell metabolism by regulating the glycolytic pathway. Although, inhibitors targeting PDK1 have been effective in inhibiting glycolysis in multiple cancers, their lack of selectivity leading to off-target effects limit their therapeutic benefit. Herein, we investigated the inhibitory potential of six PDK1 inhibitors on cellular proliferation, migration, and invasion of androgen-sensitive LNCaP and androgen-negative PC-3 prostate cancer cells.

View Article and Find Full Text PDF

Pharmacological Properties of Extracts-A Plant Used to Treat and Manage Elephantiasis.

Int J Mol Sci

January 2025

Infectious Diseases and Medicinal Plants Research Niche Area, Botany Department, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.

(Thunb.) Less. has recently become a plant species of interest to researchers due to its biological activities and less toxic effects.

View Article and Find Full Text PDF

Energy delivered at different wavelengths causes different types of damage to DNA. PC-3, FaDu, 4T1 and B16-F10 cells were irradiated with different wavelengths of ultraviolet light (UVA/UVC) and ionizing radiation (X-ray). Furthermore, different photosensitizers (ortho-iodo-Hoechst33258/psoralen/trioxsalen) were tested for their amplifying effect.

View Article and Find Full Text PDF

Objective: In this study, 25 synthetic cyclic lipopeptides (CLPs) were investigated for their anticancer potential against mouse melanoma (B16F10) cells, human prostate cancer (PC-3), human colorectal adenocarcinoma (HT-29) and mouse embryonic fibroblast (NIH3T3) cells.

Methods: The cytotoxic activity of investigated compounds was evaluated using MTT and CV assays. In order to examine the mechanism of action of the most potent compound cell cycle analysis, apoptosis assay, caspase activity, CFSE and DHR staining, DAF-FM, autophagy and immunocytochemistry caspase-3 assays were performed.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) contribute to the resistance of intractable prostate cancer, and dopamine receptor (DR)D2 antagonists exhibit anticancer activity against prostate cancer and CSCs. Human prostate cancer PC-3 cells were used to generate CSC-like cells, serving as a surrogate system to identify the specific DR subtype the inhibition of which significantly affects prostate-derived CSCs. Additionally, the present study aimed to determine the downstream signaling molecules of this DR subtype that exert more profound effects compared with other DR subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!