The most important natural sources of new leads are plant extracts, bacterial broths, animal venoms and peptides isolated from living organisms. However, only the three first have been used extensively in the development of new therapeutic agents. This is probably due to the low pharmacological profile exhibited by peptides, that requires a lengthy transformation to make them suitable as new leads. In contrast, bioactive compounds isolated from the other sources are regularly closer to be used as lead compounds. Nevertheless, the sources for compounds of this category are nowadays scarce. In contrast, there are new bioactive peptides discovered quite often and reported as ligands for different receptors. Under these circumstances peptides appear as an attractive source of prospective new leads. In order to reduce the time involved in the design of a potential lead from a peptide, molecular modeling tools have been developed in the last few years. The purpose of the present work is to review the different techniques available and to report various successful examples of design of new peptidomimetics published in the literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0929867023368683 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Nanjing University, School of Chemistry and Chemical Engineering, No. 163 Xianlin Road, 210023, Nanjing, CHINA.
Hydroxylation, an extensive post-translational modification on proline, is critical for the modulation of protein structures, further dominating their functions in life systems. However, current mass spectrometry-based identification, could hardly distinguish hydroxylation from neighboring oxidation due to the same mass shifts, as well as challenges posed by low abundance and exogenous oxidation during sample preparation. To address these, an engineered nanopore was designed, capable of discriminating single hydroxyl group, to achieve the identification of proline hydroxylation on individual native peptides directly in the mixture.
View Article and Find Full Text PDFFEBS Lett
January 2025
Allgemeine Botanik, Karlsruhe Institute of Technology, Joseph Kölreuter Institut für Pflanzenwissenschaften (JKIP), Karlsruhe, Germany.
Phytochromes are biliprotein photoreceptors found in bacteria, fungi, and plants. The soil bacterium Agrobacterium fabrum has two phytochromes, Agp1 and Agp2, which work together to control DNA transfer to plants and bacterial conjugation. Both phytochromes interact as homodimeric proteins.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
Background: Bed bugs are blood-feeders that rapidly proliferate into large indoor infestations. Their bites can cause allergies, secondary infections and psychological stress, among other problems. Although several tactics for their management have been used, bed bugs continue to spread worldwide wherever humans reside.
View Article and Find Full Text PDFTransfus Med
January 2025
Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
Objectives: Trauma-induced coagulopathy (TIC) can be fatal but preventable if recognised early. With emerging uses of rotational thromboelastometry (ROTEM) to guide transfusions in trauma, patient outcomes with TIC-defined by initial ROTEM and conventional coagulation tests (CCTs) during massive haemorrhage protocol (MHP) activations were evaluated at a primary trauma centre in British Columbia.
Methods: This retrospective observational study included adult trauma patients requiring MHP from June 1, 2020, to May 31, 2022.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!