Acute experiments on immobilized anesthetized cats were used to confirm the suggestion that the sensitivity of many neurons on the primary visual cortex to cross-shaped, angular, and Y-shaped figures may be determined by the presence within their receptive fields of disinhibitory zones, which block end-stopping inhibition. A total of 55 neurons (84 functions, i.e.. on and off responses) were used for studies of sensitivity to crosses, and responses to single bars of different lengths were compared before and after stimulation of an additional lateral zone of the field (the presumptive disinhibitory zone), which was located in terms of responses to crosses. Seventeen of the 55 cells in which increases in the length of a single bar decreased responses, i.e., which demonstrated end-stopping inhibition, showed significant increases in responses (by an average factor of 2.06 +/- 0.16) during simultaneous stimulation of the lateral zone of the receptive field, which we interpreted as a disinhibitory effect on end-stopping inhibition. These data provide the first direct evidence for the role of end-stopping inhibition and its blockade by the disinhibitory zone of the receptive field in determining the sensitivity of some neurons in the primary visual cortex of the cat to cross-shaped figures.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1020453526612DOI Listing

Publication Analysis

Top Keywords

end-stopping inhibition
16
disinhibitory zone
12
receptive field
12
sensitivity neurons
8
neurons primary
8
primary visual
8
visual cortex
8
lateral zone
8
zone receptive
8
disinhibitory
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!