Arabidopsis E2Fc functions in cell division and is degraded by the ubiquitin-SCF(AtSKP2) pathway in response to light.

Plant Cell

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain.

Published: December 2002

Selective ubiquitin-mediated proteolysis through the cell cycle controls the availability, and therefore the activity, of several cell proliferation proteins. E2F transcription factors play distinct roles in both proliferating and differentiated cells by regulating gene expression. Here, we report that Arabidopsis AtE2Fc is regulated by a balance between gene expression and ubiquitin-proteasome proteolysis. AtE2Fc degradation implicates the function of the E3 ubiquitin-ligase Skp1, Cullin, F-box (SCF(AtSKP2)) complex and seems to be dependent on cyclin-dependent kinase phosphorylation. In addition, we found that AtE2Fc degradation is triggered by light stimulation of dark-grown seedlings. Interestingly, the auxin response mutant axr1-12, in which RUB1 modification of the SCF component CUL1 is impaired, shows increased AtE2Fc protein levels, suggesting a dysfunction in the control of AtE2Fc stability. Likewise, overexpression of a stable form of the AtE2Fc protein negatively affects cell division and increases cell size. These effects are mediated, at least in part, by downregulating the cell cycle gene AtCDC6. The negative role of AtE2Fc in gene expression is further supported by the fact that AtE2Fc interacts with plant retinoblastoma-related protein, suggesting that AtE2Fc might form part of a repressor complex. We propose that AtE2Fc might play a role in cell division and during the transition from skotomorphogenesis to photomorphogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC151202PMC
http://dx.doi.org/10.1105/tpc.006791DOI Listing

Publication Analysis

Top Keywords

cell division
12
gene expression
12
ate2fc
10
cell cycle
8
ate2fc degradation
8
ate2fc protein
8
cell
7
arabidopsis e2fc
4
e2fc functions
4
functions cell
4

Similar Publications

Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.

Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.

View Article and Find Full Text PDF

Introduction: Immune-related adverse events (irAEs) induced by immune checkpoint inhibitors are difficult to predict and can lead to severe events. Although it is important to develop strategies for the early detection of severe irAEs, there is a lack of evidence on irAEs associated with ipilimumab plus nivolumab therapy for metastatic renal cell carcinoma (RCC). Therefore, this study aimed to investigate the association between eosinophil and severe irAEs in patients receiving ipilimumab plus nivolumab therapy for RCC.

View Article and Find Full Text PDF

The innate immune system plays a critical role in the rapid recognition and elimination of pathogens through pattern recognition receptors (PRRs). Among these PRRs are the C-type lectins (CTLs) langerin, mannan-binding lectin (MBL), and surfactant protein D (SP-D), which recognize carbohydrate patterns on pathogens. Each represents proteins from different compartments of the body and employs separate effector mechanisms.

View Article and Find Full Text PDF

Introduction: The envelope proteins syncytin-1 and pHERV-W from the Human Endogenous Retroviral family 'W' (HERV-W) have been identified as potential risk factors in multiple sclerosis (MS). This study aims to evaluate both humoral and cell-mediated immune response to antigenic peptides derived from these proteins across different clinical forms and inflammatory phases of MS.

Methods: Indirect enzyme-linked immunosorbent assay (ELISA) was employed to measure immunoglobulin G (IgG) responses to syncytin-1 and pHERV-W peptides in MS patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!