Unlabelled: The 14-amino-acid peptide bombesin (BN) has a high affinity for the gastrin-releasing peptide (GRP) receptor that is expressed by a variety of tumors. Recently, high densities of GRP receptors were identified by in vitro receptor autoradiography in human prostate and breast carcinomas using [(125)I-Tyr(4)]BN as radioligand. Radiometal-labeled diethylenetriaminepentaacetic acid (DTPA)-BN derivatives are potentially useful radioligands for receptor-targeted scintigraphy and radiotherapy of GRP receptor-expressing tumors.

Methods: [DTPA-Pro(1),Tyr(4)]BN (A), [DOTA-Pro(1),Tyr(4)]BN (B), [DTPA-epsilon-Lys(3),Tyr(4)]BN (C), and [DOTA-epsilon-Lys(3),Tyr(4)]BN (D) (where DOTA is dodecanetetraacetic acid) were synthesized and studied for competition with binding of [(125)I-Tyr(4)]BN to the GRP receptor. The (111)In-labeled BN analogs were studied in vitro for binding and internalization by GRP receptor-expressing CA20948 and AR42J pancreatic tumor cells as well as in vivo for tissue distribution in rats. Specific tissue binding was tested by coinjection of 0.1 mg [Tyr(4)]BN.

Results: All BN analogs competitively inhibited the binding of [(125)I-Tyr(4)]BN to the GRP receptor with 50% inhibitory concentration values in the range of 2-9 nmol/L. All (111)In-labeled analogs showed high and specific time- and temperature-dependent binding and internalization by CA20948 and AR42J cells. In in vivo studies, high and specific binding was found in GRP receptor-positive tissues such as pancreas (0.90, 1.2, 0.54, and 0.79 percentage injected dose per gram for A-D, respectively). In a rat model, the AR42J tumor could clearly be visualized by scintigraphy using [(111)In-DTPA-Pro(1),Tyr(4)]BN as the radioligand. Although [(111)In-DOTA-Pro(1),Tyr(4)]BN showed the highest uptake of radioactivity in GRP receptor-positive tissues as well as higher target-to-blood ratios, [(111)In-DTPA-Pro(1),Tyr(4)]BN was easier to handle and is more practical to use. Therefore, we decided to start phase I studies with this DTPA-conjugated radioligand.

Conclusion: [(111)In-DTPA-Pro(1),Tyr(4)]BN is a promising radioligand for scintigraphy of GRP receptor-expressing tumors. We are currently performing a phase I study on patients with invasive prostate carcinoma.

Download full-text PDF

Source

Publication Analysis

Top Keywords

grp receptor
12
grp receptor-expressing
12
grp
9
receptor-targeted scintigraphy
8
binding [125i-tyr4]bn
8
[125i-tyr4]bn grp
8
111in-labeled analogs
8
binding internalization
8
ca20948 ar42j
8
high specific
8

Similar Publications

Peptide-drug conjugates (PDCs) have recently gained significant attention for the targeted delivery of anticancer therapeutics, mainly due to their cost-effective and chemically defined production and lower antigenicity compared to ADCs, among other benefits. In this study, we designed and synthesized novel PDCs by conjugating new thiol-functionalized tubulysin analogs (tubugis) to bombesin, a peptide ligand with a relevant role in cancer research. Two tubulysin analogs bearing ready-for-conjugation thiol groups were prepared by an on-resin multicomponent peptide synthesis strategy and subsequently tested for their stand-alone anti-proliferative activity against human cancer cells, which resulted in IC values in the nanomolar range.

View Article and Find Full Text PDF

Prostate cancer (PC) represents the second most diagnosed form of cancer in men on a global scale. Despite the theranostic efficacy of prostate-specific membrane antigen (PSMA) radioligands, there is a spectrum of PC disease in which PSMA expression is low or absent. The gastrin-releasing peptide receptor (GRPR), also known as the bombesin type 2 receptor, has been identified as a target in both the early and advanced stages of PC.

View Article and Find Full Text PDF
Article Synopsis
  • Prostate cancer (PCa) is a common cancer in men, and this study introduces iron oxide nanoparticles (IONs) designed to target the overexpressed Prostate Specific Membrane Antigen (PSMA) and Gastrin Releasing Peptide (GRP) receptors in PCa for better treatment options.
  • The researchers created different functionalized IONs that were tested for size, functionality, and radiolabeling efficiency, finding them to bind effectively to PCa cells while showing low toxicity.
  • The results indicate these Tc-radiolabeled IONs are stable and could be developed as diagnostic tools for PCa using Single Photon Emission Computed Tomography (SPECT) imaging.
View Article and Find Full Text PDF
Article Synopsis
  • The suprachiasmatic nucleus (SCN) in the hypothalamus is the central control hub for circadian rhythms in mammals, producing various neurotransmitters.
  • Researchers confirmed the presence of β-adrenergic receptors in the SCN and examined their effects on energy signaling through cAMP-regulated elements.
  • The study's findings suggest that stress-related increases in adrenaline can impact circadian functions and may help explain side effects of β-blockers used for hypertension.
View Article and Find Full Text PDF

Recent Advances in Pre-Clinical Development of Adiponectin Receptor Agonist Therapies for Duchenne Muscular Dystrophy.

Biomedicines

June 2024

School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada.

Duchenne muscular dystrophy (DMD) is caused by genetic mutations in the cytoskeletal-sarcolemmal anchor protein dystrophin. Repeated cycles of sarcolemmal tearing and repair lead to a variety of secondary cellular and physiological stressors that are thought to contribute to weakness, atrophy, and fibrosis. Collectively, these stressors can contribute to a pro-inflammatory milieu in locomotor, cardiac, and respiratory muscles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!