The magnetic alignment of the Pseudomonas bacteriophage Pf1 is captured indefinitely in a gel of the aqueous triblock copolymer Pluronic F-127. In addition to preserving high-resolution liquids NMR spectra for dissolved solutes, the gel prevents the reorientation of the phage allowing mechanical manipulation of the angle between the axis of the phage alignment and the static magnetic field. The residual 2H quadrupolar couplings for several solutes dissolved in this material as a function of the angle Theta between the non-spinning sample tube and the static magnetic field are consistent with the value of P(2)(cosTheta)=(3cos(2)Theta-1)/2. The variable-angle correlation spectrum for these solutes is shown to separate residual quadrupolar effects from isotropic chemical shifts. Finally, the compatibility of Pluronic F-127 with NMR studies of aqueous biological macromolecules is demonstrated in a measurement of residual dipolar couplings in an 15N-labeled nucleic acid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1090-7807(02)00004-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!