Biological polymers, viz., proteins, membranes and micelles exhibit structural discontinuities in terms of spaces unfilled by the polymeric phase, termed voids. These voids exhibit dynamics and lead to interesting properties which are experimentally demonstrable. In the specific case of phospholipid membranes, numerical simulations on a two-dimensional model system showed that voids are induced primarily due to the shape anisotropy in binary mixtures of interacting disks. The results offer a minimal description required to explain the unusually large permeation seen in liposomes made up of specific lipid mixtures (Mathai & Sitaramam, 1994). The results are of wider interest, voids being ubiquitous in biopolymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jtbi.2003.3155 | DOI Listing |
Nat Commun
January 2025
School of Life Sciences, University of Dundee, Dundee, UK.
Complex tissue flows in epithelia are driven by intra- and inter-cellular processes that generate, maintain, and coordinate mechanical forces. There has been growing evidence that cell shape anisotropy, manifested as nematic order, plays an important role in this process. Here we extend an active nematic vertex model by replacing substrate friction with internal viscous dissipation, dominant in epithelia not supported by a substrate or the extracellular matrix, which are found in many early-stage embryos.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Weldon School of Biomedical Engineering, Purdue University, West Lafayette 47907-2050, Indiana, United States.
Granular hydrogels are injectable and inherently porous biomaterials assembled through the packing of microparticles. These particles typically have a symmetric and spherical shape. However, recent studies have shown that asymmetric particles with high aspect ratios, such as fibers and rods, can significantly improve the mechanics, structure, and cell-guidance ability of granular hydrogels.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
Background: Along‐tract analysis of white matter (WM) bundles can help map detailed patterns of WM pathway degeneration in Alzheimer's disease. Here, we present Medial Tractography Analysis (MeTA), which aims to minimize partial voluming and microstructural heterogeneity in diffusion MRI (dMRI) metrics by extracting and parcellating the volume along the bundle length while preserving bundle shape and capturing variation within and along WM bundles. We evaluated along‐tract WM microstructure associations with clinical measures in ADNI using MeTA.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Florida, Gainesville, FL, USA
Background: Repetitive mild traumatic brain injury (rmTBI) represents a substantial health challenge, urging a more thorough investigation into its early effects and possible interventions. The collective consequences of rmTBI encompass various neurobiological and neuropsychological impairments, increasing susceptibility to diseases like Alzheimer's and related dementias. Employing the Closed‐Head Impact Model of Engineered Rotational Acceleration (CHIMERA) approach for TBI induction, our prior study revealed connectivity alterations within 53% of regions in young and aged wild‐type mice five days post‐injury.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Florida, Gainesville, FL, USA
Background: Repetitive mild traumatic brain injury (rmTBI) represents a substantial health challenge, urging a more thorough investigation into its early effects and possible interventions. The collective consequences of rmTBI encompass various neurobiological and neuropsychological impairments, increasing susceptibility to diseases like Alzheimer’s and related dementias. Employing the Closed‐Head Impact Model of Engineered Rotational Acceleration (CHIMERA) approach for TBI induction, our prior study revealed connectivity alterations within 53% of regions in young and aged wild‐type mice five days post‐injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!